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ABSTRACT

We present a novel stacked autoencoder framework for fea-
ture extraction to improve classification of hyperspectral im-
age, leveraging graph regularization to address the shortcom-
ings of classical autoencoder that mainly focuses on learning
spectral features. In the proposed method, we firstly con-
struct a graph to represent the spectral-spatial similarity be-
tween pixels in a hyperspectral image by measuring their spa-
tial and spectral distances. And then the graph regularized
autoencoder is learned to transform the original spectral sig-
natures of pixels into a new feature space used for the down-
stream pixel classification or other tasks. Our feature extrac-
tion method can preserve the intrinsic spectral-spatial distri-
bution in a hyperspectral image and obtain more discrimina-
tive and robust features. The experiments on pixel classifica-
tion show the competitive performance compared with clas-
sical autoencoder based and manifold learning based feature
extraction approaches.

Index Terms— Hyperspectral Image, Pixel Classifica-
tion, Autoencoder, Graph Regularization

1. INTRODUCTION

Thank to high spectral resolution in hyperspectral image
(HSI), the rich spectral information of a pixel can be used to
extract discriminative features for HSI classification. How-
ever, due to the high-dimension low-sample-size classifica-
tion problem caused by the large number of narrow spectral
bands with a small number of available labeled training sam-
ples [1], coupled with the existence of different types of noise,
the supervised classification approaches may suffer from the
overfitting with deficient training samples [2, 3]. Unsuper-
vised feature extraction approaches, including band-selection
or dimensionality reduction techniques such as principal
component analysis (PCA) [4], can remove high redundancy,
decrease highly computational cost, and avoid Hughes phe-
nomenon [5]. Auto-encoder (AE) is a widely used neural
network method for unsupervised feature extraction, and has
been already used in HSI classification [6]. However, these
classical approaches mainly focus on the spectral features,
and neglect the local or nonlocal neighborhood information
among pixels.

For HSI classification, spatial distribution is as vital as the
spectral signatures. A widely used approach is to combine
the spatial and spectral information into a classifier. Differ-
ent from pixel-wise classification methods that do not con-
sider spatial structure, spectral-spatial hybrid extraction tries
to preserve the local consistency of the class labels in the
pixel neighborhood [7]. [8] presented graph wavelet trans-
form based feature extraction method, which takes the con-
cept of signal on graph for extracting spectral-spatial features
to acquire neighborhood and nonlocal information. For the
same purpose, [9] proposed a semisupervised learning frame-
work that is based on spectral-spatial graph convolutional net-
works. [10] proposed an end-to-end adaptive spectral-spatial
multiscale network to extract multiscale contextual informa-
tion for HSI classification.

Manifold learning assumes that meaningful data patterns
reside in a low-dimensional manifold embedded in a higher-
dimensional space [11]. It can develop a nonlinear dimen-
sionality reduction mapping to transform input data into a
latent low-dimensional space. There are lots of works on
manifold learning, including the classical methods like Iso-
metric Mapping (ISOMAP) [12], and local linear embedding
(LLE) [13]. The preservation of local geometry structure is
the key to the success of manifold learning. But manifold
learning based HSI feature extraction only considers the spec-
tral distance between pixels, while the local spatial informa-
tion is ignored. Inspired by the local isometric constraint of
manifold learning, we put graph regularization into feature
extraction of HSI.

Recently, [14] proposed a deep learning framework
MLDL (Markov-Lipschitz Deep Learning) for manifold
learning and data representation in order to make the layer-
wise feature transform more stable and perform better.
MLDL incorporates the local relation information among
samples into their deep representations, and thus the rep-
resentation could reflect the own features of an individual
sample and the local relation between all samples. Due to the
integration of space and spectrum in HSI, it is vital for HSI
classification to learn and preserve graph structure informa-
tion in pixel features. Inspired by it, we present to combine
AE with graph regularization for HSI classification.

In this paper, we propose a novel stacked AE network,
called graph regularized AE (GR-AE), to extract spectral-
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spatial features for HSI classification. To keep the original
local graph of HSI pixels during layer-wise feature transfor-
mation, we impose local graph regularization (LGR) on each
encoder layer as the prior constraints, which alleviate the
graph structure information distortion when extracting spec-
tral features, and improve both stability and discrimination of
feature embedding.

2. METHOD

In this section, we first describe the notations and network ar-
chitecture, then explain the graph construction and loss func-
tion.

2.1. Network architecture

Let X = {x1,x2, . . . ,xM} be a set of HSI pixels embed-
ded in Rm, where M is the number of pixels and m is the
dimension of pixel. S = {1, 2, . . . ,M} is the set of indices
corresponding to X , and dX is a metric on X. Ni represents
the index set of local neighbors of xi, thus N = {Ni|∀i ∈ S}
is the neighborhood system of X . If a pair (i, j) ∈ S × S, it
is limited by j ∈ Ni, unless specified otherwise.

Manifold learning preserves the local geometric structure
of data defined by the neighborhood system. Following the
similar idea, we define the graph G(X,D, N), in which D =
[d(xi,xj)] is the distance matrix providing quantitative infor-
mation about local neighborhood and thus reflecting the local
graph of pixels. The objective of manifold learning is to find a
mapping Φ : G(X,DX, NX) → G(Z,DZ, NZ), transform-
ing input data X ⊂ Rm to latent feature embedding Z ⊂
Rn(n < m) and satisfying the local isometric constraint. It
is to transform the original input into a low-dimensional space
while preserving the local graph structure of the original data,
which is quantitatively represented by the distance matrix.
Similarly, in the encoder of stacked AE, we can interpret Φ
as a cascaded L-layer mappings Φ = ϕ(L) ◦ · · · ◦ ϕ(2) ◦ ϕ(1),
which is constrained by the graph G:

Φ :G(X(0),D(0), N (0))
ϕ(1)

−→ G(X(1),D(1), N (1))

ϕ(2)

−→ · · · ϕ(L)

−→ G(X(L),D(L), N (L))

(1)

where X(0) = X is original input data, ϕ(l) represents the
nonlinear feature transformation of l-th layer, l ∈ {0, 1, . . . , L},
and X(l) is the output feature of transformation ϕ(l). N (l) is
the neighborhood system of l-th layer, D(l) = [dl(x

(l)
i ,x

(l)
j )]

is the distance matrix of l-th layer with the given metric dl.
The feature transformation of l-th layer can be written as:

X(l+1) = ϕ(l)(X(l),D(l), N (l)|W(l)) (2)

where W(l) is the weight matrix for l-th layer, D(l) is used
for local graph constraint to ensure the local graph structure
(neighborhood system) of l-th layer can keep consistent with

the original graph as much as possible. The specific form of
the nonlinear feature transformation ϕ(l) in AE is the fully-
connected layer σ(W(l)X(l)), where σ is the nonlinear ac-
tivation function. After the cascaded feature transformation,
the output of L-th layer Z = X(L) ⊂ Rn is the features used
for classification.

The overall structure of the GR-AE network is outlined in
Fig. 1. We employ the stacked AE as the backbone network
and impose local graph constraints on the encoder. GR-AE is
composed of a L-layer encoder used for feature embedding,
and a corresponding L-layer decoder aimed for input recon-
struction. LGR is modeled quantitatively by the distance of
features and imposed between input layer and each hidden
layer of the encoder, which ensures that the prior local graph
structure is preserved layer by layer.

Classifier

Encoder

Decoder

Fig. 1. GR-AE consists of a L-layer encoder and a L-layer de-
coder connected by arrows in blue, the LGR prior constraint
on pixels is imposed between input layer and each hidden
layer of the encoder, shown as arcs in red. The LGR con-
straints are encoded into the loss function.

2.2. Graph Construction

The core idea of GR-AE is to apply the prior LGR across each
layer of the encoder in stacked AE. It requires the layer-wise
feature mappings of the encoder to satisfy the LGR constraint.
In other words, for j ∈ Ni, the distance between features of
pixel i and its neighbor j should be kept as close as possible
layer by layer:

dX(xi,xj) = dZ(Φ(xi),Φ(xj)) (3)

where dX denotes the distance metric of the original data in
input layer, and dZ for each hidden layer in the encoder. Dis-
tance metric is used to calculate the distance matrix of fea-
tures for each layer, such distance can measure the relation
between pixels in HSI, equivalent to the adjacency between
nodes on a graph, i.e. the local graph structure information.
Therefore, LGR constraints can be satisfied by minimizing
the following objective:

Llgr = |dX(xi,xj)− dZ(Φ(xi),Φ(xj))| (4)
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Llgr measures the distortion of the local graph structure be-
tween hidden layer and input layer, forcing the distance in
DZ to approximate its counterpart in DX , and reaches the
lower limit of 0 when the LGR constraint is fully satisfied.
This ideal state indicates that the features extracted through
layer-wise transform preserve the local graph information of
the original input completely.

In terms of the construction of local graph, as spatial in-
formation is important for HSI classification, we adopt Eu-
clidean distance weighted by the spatial neighborhood con-
straints as the distance metric measuring adjacency between
nodes (pixels) in the input layer, and standard Euclidean dis-
tance for hidden layers. For the former, specifically, for xi ∈
X, if j ∈ S satisfies |ik − jk| < δ, k ∈ {0, 1}, then j ∈ Ni,
i.e. xj locates in the neighborhood of xi, in which ik and jk
denote spatial coordinates of xi and xj in the raw HSI respec-
tively, ik or jk is x-coordinate for k = 0 and y-coordinate for
k = 1. This ensures the neighborhood set of xi is constrained
by the spatial context and kept within a local window. The
size of the window is controlled by the parameter δ. If δ is 5,
then the neighborhood of each pixel is within a 9 × 9 local
window. The distance within the local window is defined by:

dij = e−w−1
ij ∥xi − xj∥22 (5)

where wij is Euclidean distance between spatial coordinates
of xi and xj . The construction of adjacency relation between
nodes of such local graph reflects spectral-spatial information,
the closer two pixels are in space, the smaller the distance
between them and the more similar the spectral features are.

2.3. Loss Function

The proposed loss function contains two parts: the LGR loss
measuring local graph regularization and the reconstruction
loss of the stacked AE.

LGR loss imposes the isometric constraint between each
hidden layer and input layer to optimize the preservation of
the original local graph structure of the extracted HSI fea-
tures. According to Equation 4, for index i ∈ S, if j ∈ Ni,
in order to measure the local graph regularization lgrl of l-th
layer, we define the isometric constraint of pixel pair (i, j) as
follow:

lgrl(i, j) = |dX(x
(0)
i ,x

(0)
j )− dZ(x

(l)
i ,x

(l)
j )| (6)

where l ∈ {1, 2, . . . , L} represents the index of hidden layer
of the encoder. The overall LGR loss is the sum of the losses
of each layer:

Llgr(W) =

L∑
l=1

∑
i∈S

∑
j∈Ni

lgrl(i, j) (7)

The reconstruction loss is the sum of the losses between cor-

responding layers of encoder and decoder:

Lrec(W) =

L−1∑
l=0

∑
i∈S

∥x(l)
i − x̂

(l)
i ∥2 (8)

The total loss of the model is:

LGR−AE(W) = αLlgr(W) + γLrec(W) (9)

where α is the weight parameter of the LGR loss and γ for
the reconstruction loss.

3. EXPERIMENTS

We employ two real-world data to evaluate the HSI classifica-
tion performance of the proposed method. Classical manifold
learning algorithms are selected as alternative methods for
comparison, including LLE and ISOMAP. Moreover, PCA is
also used for comparison. The classical stacked AE without
LGR is used as the baseline. The features extracted by all
methods are set to have the same dimension.

The first data set is Indiana HSI acquired by the NASA
AVIRIS over the Indian Pine Test Site in Northwestern Indi-
ana in 1992. The image size is 145 × 145, with 220 bands
in total. The noisy bands are removed so that 200 bands
remained for the experiments. This HSI contains 16 land-
cover classes and 10366 validly labeled pixels, and refer
to https://aviris.jpl.nasa.gov/data/ for the detailed informa-
tion. We respectively randomly selected 5% and 10% labeled
pixels as training samples for classifier learning, and the
remained pixels as test samples.

The second is Pavia-U HSI, acquired by the ROSIS-03
optical sensor over the University of Pavia. After removing
water absorption and low SNR bands, 103 bands remain.
Each band image is 610 × 340 in size. It has 9 land-cover
classes, and 42776 labeled pixels in which 3921 samples
have been selected to make up a training set, and refer to
http://www.ehu.eus/ccwintco/uploads for the detailed infor-
mation. All samples in the training set and 10% samples in
the training set are respectively selected as training samples,
and the remained labeled pixels as test samples.

The whole network is optimized by Adam optimizer. In
terms of the hyper-parameters, we empirically set the batch
size as 800, which means the size of the pixels set equals 800,
and the number of epochs is 1000. The initial learning rate
is 0.001 and multiplies 0.1 every 100 epochs. The α is set to
1 and γ is set to 0.2 according to ablative experiments. As
for the GR-AE network, we set the number of layers L as 5,
the number of neurons in each layer of the encoder is 1000-
500-250-100-25 in turn, thus the dimension of the extracted
features is 25. For the parameter δ, we set it as 7.

Table 1 summarizes the classification accuracies of the
methods under comparison. All experimental results in the ta-
bles are the average of results from 5 times of random training
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Table 1. Classification performance comparison in terms of
overall accuracy(OA) and average accuracy(AA)

Data Set Classifier AE PCA LLE ISOMAP GR-AE

Indiana LSVM OA 65.34 62.70 56.96 58.10 80.03
LSVM AA 51.36 49.26 44.17 47.94 69.61

5% RSVM OA 65.40 63.03 57.42 59.28 82.11
RSVM AA 53.67 51.14 44.68 48.20 71.71

Indiana LSVM OA 69.01 67.53 58.17 61.90 82.23
LSVM AA 59.61 52.84 45.00 54.76 75.75

10% RSVM OA 70.19 67.98 58.60 64.44 85.19
RSVM AA 64.51 56.39 45.75 55.86 79.33

Pavia-U LSVM OA 83.27 78.48 72.01 72.96 84.82
LSVM AA 86.90 80.39 78.34 78.91 88.04

10% RSVM OA 85.29 79.86 73.26 72.08 87.45
RSVM AA 88.13 81.77 80.08 77.51 88.96

Pavia-U LSVM OA 88.24 88.61 73.81 75.56 91.61
LSVM AA 90.66 89.41 80.53 82.93 92.24

100% RSVM OA 90.57 90.60 75.90 78.58 92.49
RSVM AA 91.89 91.15 82.62 84.66 92.58

sample selection. For classifier, we choose linear support vec-
tor machine (LSVM) and radial basis function SVM (RSVM),
when training the SVM, we use cross-validation and grid
search to determine the optimal SVM hyper-parameters. It
can be found that in general, GR-AE based features lead to
the better performance of pixel classification than classical
AE based features. In addition, our method is significantly
superior to manifold learning methods and PCA for HSI
feature extraction.

4. CONCLUSION

In this paper, we propose a novel stacked AE with graph
regularization to extract pixel features for HSI classification.
Graph regularization imposed on AE combines the feature
extraction of classical AE and the locally isometric smooth-
ness of manifold learning. Local graph construction of HSI
takes advantage of both spectral and spatial information, mak-
ing original spectral-spatial distribution of HSI be effectively
preserved during layer-wise transformation, and thus making
the extracted features more stable and more discriminative in
low-dimensional space. We demonstrated the effectiveness
and advantages of GR-AE for HSI classification compared
with classical AE and manifold learning methods.
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