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ABSTRACT

Small object detection has drawn increasing interest in com-
puter vision and remote sensing image processing. The Re-
gion Proposal Network (RPN) methods (e.g., Faster R-CNN)
have obtained promising detection accuracy with several hun-
dred proposals. However, due to the pooling layers in the
network structure of the deep model, precise localization of
small-size object is still a hard problem. In this paper, we de-
sign a network with a deconvolution layer after the last con-
volution layer of base network for small target detection. We
call our model Deconv R-CNN. In the experiment on a re-
mote sensing image dataset, Deconv R-CNN reaches a much
higher mean average precision (mAP) than Faster R-CNN.

Index Terms— Object detection, Convolutional neural
network, Deconvolution, Small object, R-CNN

1. INTRODUCTION

With the increasing number of remote sensing images in real-
world applications, small object detection becomes more and
more important. Among these, the detections of plane and
ship in remote sensing images have been a hot topic. De-
tection of plane and ship in optical images is a “wide range,
small object” detection application. The process of remote
sensing images has following notable difficulties:

• Object is too small: The objects in remote sensing im-
ages are smaller than that in natural images.

• Background is complex: There are too much back-
ground objects that are hard to distinguish from remote
sensing images.

With the rapid development of convolutional neural net-
works (CNN), Girshick et al. proposed a framework of R-
CNN [1], which converted the object detection problem into
classification problem. In this framework, candidate region
proposals are extracted by using Selective Search (SS) [2].
Then, the features are extracted from the candidate region
proposals by CNN. Finally, R-CNN classifies these features
by Support Vector Machine (SVM) classifier, and performs
bounding box regression on the candidate region proposals.

R-CNN is a pioneering work for object detection with CNN.
The results show that CNN are much better than the tradition-
al methods which use hand-engineered features. However, the
R-CNN needs to extract more than 2k region proposals. Each
proposal is fed into the base network (e.g., VGG16) to extract
features, and this process is too time-consuming. Besides, R-
CNN needs to fix the input size of image in network structure.
To improve the efficiency and handle with any input size, Gir-
shick further proposed the Fast R-CNN [3] framework which
significantly improved efficiency and the accuracy of R-CNN.
Fast R-CNN adopts a region of interest (ROI) pooling strat-
egy, which allows the network extracting high level features
on proposal windows with any size much faster. However,
Fast R-CNN also uses SS to extract candidate proposals, and
the procedure of feature extraction and object classification
are separated. Later, Ren et al proposed Faster R-CNN [4],
in which the candidate region proposals are obtained by CN-
N, which is known as Region Proposal Network (RPN). The
RPN computes the proposals and shares features with Fast
R-CNN. This method can train an end-to-end network and
achieve better detection performance. However, after a set of
convolution and pooling layers, the feature maps of the last
convolution layer in Faster R-CNN are small. The objects in
the original image are also much smaller in last feature maps.
For example, a 32× 32 object will be 2× 2 when it is passed
through a VGG16 [5]. As a result, the object is hard to locate,
which makes Faster R-CNN not solve small object detection
problem well.

Meanwhile, Fully Convolution Network (FCN) [6] had
been proposed and proven to be good at semantic segmen-
tation task. In FCN, a network combined with convolution
and pooling, receives an image and outputs the feature map-
s. Next, the feature maps use deconvolution layers to get an
output map with same size as input image. Finally, the input
image and output map can be compared to get pixel-based
segmentation results. FCN gets a good result in segmenta-
tion of PASCAL VOC [7]. Through FCN network, the input
image will be down-sampled, and the last feature map is 32
times smaller than the input image. Therefore, it is impos-
sible to do semantic segmentation directly. However, it uses
a deconvolution layer to up-sample feature map to the same
size as the original image. Finally, it does classification on
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Fig. 1. Decon R-CNN network architecture

every pixel of the last feature map to obtain the segmentation
result. From the network structure of FCN, we can find that
the deconvolution layer will recover information which is lost
in the process of extracting features.

Inspired by FCN, in this paper, we propose a Deconv R-
CNN, in which we add a deconvolution layer in the base net-
work of Faster R-CNN to recover small object information.
The experimental results show that the method achieves good
results in the small object detection of remote sensing images.
Our main results are: a) On the detection task of ship and
plane, we achieve a high mAP [8] of 55.6%, outperforming
the Faster R-CNN by 13.1%. b) From the visualization of the
detection results, we find that the main improvement comes
from the detection of small objects.

2. DECONV R-CNN

Figure 1 illustrates the Deconv R-CNN architecture. The im-
age is processed by convolutional layers, which produces the
feature maps. Then, we utilize a deconvolution layer to get
up-sampled feature maps. Next, a region proposal network
(RPN) is used to produce a set of proposals from the up-
sampled feature maps. Finally, a Fast R-CNN detection net-
work is used to regress, classify and remove duplication of
these proposals to get final detection results.

2.1. Deconvolution

Semantic segmentation is understanding an image at pixel
level. If we use CNN to semantic segmentation, pooling lay-
ers will decrease the resolution, and the information of small
object will be loss. Therefore, a good up-sampling method is
important. The key contribution of FCN is adopted a decon-
volution layers to do up-sampling.

The concept of deconvolution is widely used in image
processing and signal processing. Deconvolution is a process
used to reverse the effects of convolution on data. With the
development of CNNs, deconvolution is also used as a layer
for up-sampling in convolution neural network. The decon-
volution specific implementation is shown in Fig. 2.

Fig. 2. Deconvolution implementation

Fig. 3. RPN architecture

2.2. Region Proposal Networks

A Region Proposal Networks (RPN) receives an image as the
input whose size is not specified, and then generates a set of
proposals and scores each proposal. The RPN architecture is
shown in Fig. 3.

To get these proposals, after the last convolution layer,
RPN uses a small network over the feature maps. These fea-
ture maps are passed to two convolutional networks, in which
one is classification layer (cls) and another is regression lay-
er (reg). Specifically, each pixel in feature maps generates
some region candidate boxes. Then, region candidate boxes
are fed into the cls and reg layer to get proposals. The cls lay-
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Fig. 4. Detection Network

er decides whether these candidate boxes are objects or not,
and the reg layer output regresses these candidate boxes to
achieve more compact boxes. Finally, the results of cls layer
and reg layer are combined as a set of proposals.

2.3. Object Detection

The RPN generates a set of proposals. The next step is to
determine the label and the position for each proposal. In our
model, we use the Fast R-CNN network for detection, which
contains 2 fully connection layers and 2 dropout layers. Like
RPN, the detection network also has two output layers for
each proposal. One is to output N + 1 label scores (where N
is the number of object classes, plus 1 for background) and
another is to output 4 ×N bounding box regression for each
candidate box. The detection network architecture is shown
in Fig. 4

2.4. Training

To training the RPN, we assign a binary class label (of being
an object or not) to each proposal. We assign positive label to
a proposal which has an Intersection-over-Union (IoU) higher
than 0.7 with any ground-truth box and a negative label to a
box if its IoU is lower than 0.3 with any ground-truth box.
The multi-task loss function for the RPN is defined as:

L({pi}, {ti}) =
1

Ncls

∑
Lcls(pi, p

∗

i )

+ λ
1

Nreg

∑
p∗iLreg(ti, t

∗

i )
(1)

where i is the index of a proposal and pi is the probability
of a proposal belong to an object. p∗i ǫ{0, 1} is ground-truth
label. t∗i is the ground-truth of the box’s position containing 4

values (the coordinates of upper left corner, width and height
of the bounding box). ti is the predicted bounding box. The
classification loss Lcls is a log loss over two classes (object vs.
not object). For the regression loss, we define Lreg(ti, t

∗

i ) =
R(ti, t

∗

i ) where R is the robust loss function defined in [3].
The Ncls, Nreg and λ are parameters for normalization. In
our experiments, Ncls(= 256) is set to the mini-batch size
and Nreg(≈ 2400) is the number of region proposal. We set
λ = 10 to balance the two losses.

The stochastic gradient descent (SGD) is used to train our
model end-to-end [9]. Firstly, we use a pre-trained model
(VGG16) trained on ImageNet [10] for classification to ini-
tialize our base network.

All new layers are randomly initialized by drawing
weights from a zero-mean Gaussian distribution with stan-
dard deviation 0.01.

In each iteration, the input images are fed to a set of con-
volution and pooling layers to extract feature maps. The the
feature maps are up-sampled by a deconvolution layer to re-
cover the information of small objects. Next, the feature maps
are put into RPN to obtain proposals. Finally, the proposals
are fed to the Fast R-CNN detection network.

In the experiment, we train the model for 70k iterations
where the weight for the momentum in the gradient descent
is set to 0.9. The learning rate is set to 0.001 for the first 50k
iterations and 0.0001 for the remaining 20k iterations with a
weight decay of 0.0005.

3. EXPERIMENTAL RESULTS

In this section, we evaluate our method and compare it with
Faster R-CNN on a remote sensing image dataset. The dataset
consists of 2400 images which contains 2 object categories
(ship and plane) to detect.

In the first experiment, we randomly sampled 1600 im-
ages for training and 800 images for test, and used the mean
average precision (mAP) to evaluate the performance. Our
method obtains 80.5% mAP, which is slightly better than
Faster R-CNN (78.3% mAP).

However, since only a small number of the test images
contain small objects, this experiment cannot reflect the de-
tection method’s effectiveness in small object detection. To
specifically evaluate the performance in small object detec-
tion, we selected 40 images that mainly contain small objects
as the test set from the 800 test images. We did experiments
with different scales of upscaling in the deconvolution layer,
which allows us to obtain feature maps with different sizes.
The results of 2 times, 4 times and 8 times magnification are
shown in Table. 1. We can see that the best results are ob-
tained when up-scaling the feature map by 8 times, which
indicates that using the deconvolution layer to upscale feature
maps is very helpful in small object detection. The compared
results with Faster R-CNN are shown in Table. 2, in which
our result is 13.1% higher than that of Faster R-CNN. We al-
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Table 1. Results of different magnification scales.
mAP Ship Plane

Deconv-scale×2 52.0 61.2 42.8
Deconv-scale×4 54.0 61.8 46.2
Deconv-scale×8 55.6 62.4 48.7

Table 2. Comparative results.
mAP Ship Plane

Faster R-CNN 42.5 50.6 34.3
Ours 55.6 62.4 48.7

so display the detection results on two images obtained by the
two methods in Fig. 5 and Fig. 6, respectively. The result-
s show that our method is able to detect small objects with
higher accuracy.

Our model, as well as Faster R-CNN, has very high time
efficiency. The inference for an image takes about 200ms on
a GTX 1080 GPU.

4. CONCLUSION

We have presented a method for small object (e.g. ship and
plane) detection in remote sensing images. By using a decon-
volution layer to recover the information of the small objects
lost in the previous pooling layers, our method obtains a great
improvement on Faster R-CNN. Moreover, our model can de-
tect the objects in a single image at near real-time frame rate
(within milliseconds). The high time-efficiency and the de-
tection precision make our method very useful in real-world
application.
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Fig. 5. Plane detection results.
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Fig. 6. Ship detection results.
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