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Abstract— When a detection model that has been well-trained
on a set of classes faces new classes, incremental learning is
always necessary to adapt the model to detect the new classes. In
most scenarios, it is required to preserve the learned knowledge
of the old classes during incremental learning rather than reusing
the training data from the old classes. Since the objects in
remote sensing images often appear in various sizes, arbitrary
directions, and dense distribution, it further makes incremental
learning-based object detection more difficult. In this article,
a new architecture for incremental object detection is proposed
based on feature pyramid and knowledge distillation. Especially,
by means of a feature pyramid network (FPN), the objects
with various scales are detected in the different layers of the
feature pyramid. Motivated by Learning without Forgetting
(LwF), a new branch is expended in the last layer of FPN,
and knowledge distillation is applied to the outputs of the old
branch to maintain the old learning capability for the old classes.
Multitask learning is adopted to jointly optimize the losses from
two branches. Experiments on two widely used remote sensing
data sets show our promising performance compared with state-
of-the-art incremental object detection methods.

Index Terms— Deep learning, incremental learning, object
detection, remote sensing.

I. INTRODUCTION

THE rapid development of remote sensing technology
has significantly increased the quantity and quality of

remote sensing images available to characterize various objects
on the earth’s surface. Object detection in remote sens-
ing plays a crucial role in a wide scope of applications,
such as intelligent monitoring, urban planning, and precision
agriculture [1]. Benefiting from powerful feature representa-
tion capabilities and some publicly available natural image
data sets, such as Microsoft common objects in context
(MSCOCO) [2] and PASCAL visual object classes (VOC) [3],
many deep learning-based object detection approaches have
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achieved great success in natural scene images, e.g., fast
RCNN [4], faster RCNN [5], feature pyramid network
(FPN) [6], YOLOv2 [7], SSD [8], and RetinaNet [9]. Some-
what different to natural images, objects in remote sensing
images often appear in various scales, arbitrary orientations,
and cluttered arrangements. Therefore, several data sets have
been developed in recent years, such as NWPU VHR-10 [10],
DOTA [11], and DIOR [12]. Deep learning-based object
detection methods also achieve good performance on these
remote sensing data sets [13], [14].

One of the challenging tasks encountered in object detection
is how to adapt the detector trained on a set of old target
classes to unseen new classes. Each time the model meets
a new class, conventional approaches have to be completely
retrained on all images of the new class along with the
previous classes. This requires the storage of all the avail-
able training sets and high computational time. For these
reasons, conventional methods have critical limitations for
deploying the well-trained models in some platforms where
new target classes are often encountered, but the training
sample set of old classes is no longer available. Therefore,
it is necessary that, without utilizing images from the old
classes, the updated detector could provide satisfactory results
on unseen new classes and preserve the knowledge learned
from old classes at the same time. Such a problem belongs
to incremental learning, which refers to the situation of con-
tinuous model adaptation based on a constantly arriving data
stream [15]. Many incremental learning approaches have been
proposed [16]–[24].

Fine-tuning [25] is a simple technique to adapt a network
to new classes. This type of method adjusts the output layer
of the original network in two ways: one replaces it with
new classes to construct a new network just for new classes,
and the other adds new nodes corresponding to new classes
to the existing nodes. The whole parameters of the network
are tuned with the training data from new classes. However,
it suffers from catastrophic forgetting—an abrupt degradation
of performance on the old classes when the training objective
function is adapted to new classes [26], [27]. This phenom-
enon of forgetting is caused by two main factors [28], [29].
First, the internal nodes are largely interconnected with each
other, and a small change in one single neuron could affect
many neurons [28]. Second, all parameters in the feedforward
network participate in computations for every data sample, and
the backpropagation updates every parameter in each training
step [29].
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Several works have been proposed to avoid catastrophic for-
getting. One important approach is adding regularization [16]
to the weights of the model according to their importance to
the old classes. Another research direction is knowledge dis-
tillation [30], which uses the new data to distill the knowledge
from the old model to mimic its behavior when training the
new model [17], [18]. Notably, Learning without Forgetting
(LwF) [17] expands a new branch in the last layer of the
network for classifying the new classes, and the old branch
outputs the results of the old classes. The new branch could be
learned with the training samples of new classes while sharing
parameters of previous layers with the old branch. It can well
copy with the problem of catastrophic forgetting. LwF first
trains a classification model by using the images of old classes
and stores it for the subsequent training process. We denote
the stored model as the frozen model. Then, LwF encourages
the outputs of the old branch trained with the new classes
to approximate the outputs of the frozen model by applying
knowledge distillation.

In this article, inspired by LwF, we propose a new archi-
tecture for class-incremental object detection based on feature
pyramid and knowledge distillation. In the proposed network,
FPN is used to detect objects in different layers of the
feature pyramid, thus obtaining better detection results for
remote sensing images teemed with objects of various scales.
In addition to horizontal box regression, a rotated bounding
box is also introduced to tackle the arbitrary orientation
and dense arrangement of objects in remote sensing images
[14], [31]. There exist other tailored methods [10], [32]–[34]
for localization of objects, which can be borrowed instead
of the horizontal and rotated bounding box methods in our
proposed model. Incremental learning with knowledge dis-
tillation is embodied in the architecture from two aspects.
First, the branch expansion is used to build a new branch in
the last layer of FPN for detecting the new classes. Second,
knowledge distillation is applied to the outputs of the old
branch to preserve the knowledge learned in the old classes.
The multitask learning is adopted for jointly optimizing the
distillation loss from the old branch and the detection loss
from the new branch. Experimental results demonstrate the
effectiveness of our method on two popular data sets: DOTA
and DIOR. To the best of our knowledge, this is the first study
to address the incremental target detection problem in the
remote sensing field, in which the old model is incrementally
updated only with a training set of new object classes, while
the training samples of old classes are not required.

The rest of this article is organized as follows. Section II
briefly reviews the related works. Section III clarifies the
proposed method, followed by the details of the implemen-
tation. Section IV presents the experiments conducted on
two commonly used remote sensing data sets to validate the
effectiveness of our approach. Section V further discusses
the results of the proposed method. Finally, we conclude this
article in section VI.

II. RELATED WORK

In general, deep learning-based object detection approaches
can be divided into two- and one-stage methods. Two-stage

methods first produce region proposals for subsequent
fine-grained classification and regression. One-stage methods
directly output final results without producing intermediate
region proposals. For two-stage methods, inspired by LwF,
[19] is the first work of introducing incremental learning
into object detection based on Fast R-CNN. References
[20] and [21] follow similar ideas and further extend to
Faster R-CNN. Faster R-CNN introduces the region proposal
network (RPN) to generate region proposals and achieves
better performance. The key problem of such extension is how
to adapt previous knowledge for generating the class-agnostic
region proposals of the current new classes. Reference [19]
uses EdgeBoxes [35] and multiscale combinatorial group-
ing (MCG) [36] to generate such proposals by grouping
extracted edges and performing hierarchical image segmenta-
tion, respectively. Reference [20] measures the mean squared
error of the feature map before the classifier in RPN between
the frozen model and the current training model trained on
the new classes. In addition to measuring the discrepancy
of feature maps between two models, [21] computes the
difference of classification and regression outputs in RPN
by using knowledge distillation. However, it is difficult to
choose the appropriate intermediate feature map to measure
the discrepancy, as feature maps in different layers of the
network correspond to different receptive fields. Moreover,
all these works have proved that the branch expansion could
better model distinct distributions between the old and the new
classes compared with the single branch. Two-stage methods
usually obtain higher accuracy, while one-stage methods have
faster inference speed. Based on one-stage methods, [22]
distills three types of knowledge from the frozen model to
mimic its behavior on classification, regression, and feature
extraction. Unlike knowledge distillation, [23] presents an
alternative way by mining memory neurons in the old model,
and then, the rest neurons are updated and employed to
detect new classes. Our method adopts a two-stage network
FPN as the backbone structure, expands a new branch in the
output layer for detecting new classes, and utilizes knowledge
distillation to transfer measure the knowledge of the frozen
model into the old branch.

In the field of remote sensing, several attempts have been
made to develop incremental learning methods for classifying
optical, SAR, and hyperspectral images [37]–[42]. Compared
with classification task, only a few works focus on incremental
object detection problem. Most of them are proposed to
improve the detector with arriving new samples from the
old classes [24], [43], rather than adapting to unseen new
object classes. Furthermore, several specific characteristics
pronounced for images in remote sensing should be given more
attention: 1) the images often contain objects of various scales
overwhelmed by complex surrounding scenes; 2) the targets
are often densely arranged, such as vehicles and ships; and
3) the objects could appear in arbitrary orientations. Therefore,
class-incremental object detection in remote sensing images
is still a challenging problem. With consideration of these
pronounced characteristics, our proposed incremental object
detection method uses some specific strategies, such as mul-
tiscale feature map and rotated bounding box.
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Fig. 1. Framework for learning object detectors incrementally. It is composed of a frozen copy of the old detector (frozen model) for the old classes and
the new detector (training model) adapted for the new classes.

III. PROPOSED METHOD

Given an object detection model that is well-trained with
the old set of classes Co, our goal is to update the model with
only images of the new set of classes Cn , and Cn ∩ Co = φ.
The model of our incremental detection method is illustrated
in Fig. 1. We train an FPN to detect the old classes Co and
store it as the frozen model. Derived from the frozen model,
the model is trained to detect the new classes Cn and maintain
the original detection capability with the frozen model. The
updated model should work well on all the observed classes
C = Co ∪ Cn . For simplicity, we denote the tasks of detecting
the old and new classes as the old and new tasks, respectively.

The proposed network includes three main components: the
feature extraction module, the RPN output, and the FRCNN
output. The feature extraction module is composed of consec-
utive convolution layers for transferring an input image into
feature maps. The RPN output represents the output layer in
RPN, and the FRCNN output refers to the last output layer
in the network. For detecting new classes, we expand a new
branch in the RPN output and the FRCNN output. With the
aid of the frozen model, the old branch tries to mimic the
outputs from the frozen model to preserve the knowledge
learned from the old classes. Especially, we utilize a smooth
L1 loss to measure the discrepancy of outputs between the
frozen model and the old branch in the RPN output. With
regions of interest (RoIs) extracted from the frozen model
as input, the outputs of the FRCNN output approximate
the corresponding outputs in the frozen model by applying
knowledge distillation. The expanded new branch is trained in
the same way as FPN, i.e., smooth L1 loss for regression and
cross-entropy loss for classification.

In the following sections, we explain the details of the
network and its implementation. First, we clarify the specific
structure of FPN, which is used as the backbone structure
of our network. Second, we introduce the regression of the

horizontal and rotated bounding boxes, respectively. Third,
the branch expansion for new target classes is discussed. Then,
we demonstrate how to perform incremental training with
knowledge distillation. Finally, the multitask learning strategy
is adopted to maintain the knowledge of the old task and
commit detection on the new task simultaneously.

A. FPN

Since objects in remote sensing images often appear across
a large range of scales, we adopt FPN as the backbone
structure, which detects objects of different scales in the
different layers of the feature pyramid. Its architecture is
shown in Fig. 2. The RPN output and the FRCNN output
refer to the last fully-connected layers used for regressing
and classifying anchors and RoIs, respectively. In the feature
extraction module, the input image is processed by consec-
utive convolution layers corresponding to different receptive
fields. The shallow convolution layers merge the abstract
semantic information from deeper layers by upsampling. Such
top–down architecture with lateral connections could help
build high-level semantic feature maps at all scales. The RPN
output produces class-agnostic RoIs containing the objects
with various scales based on the feature maps extracted
from these convolution layers in different depths. The RoI
pooling used in the conventional FPN conducts coarse spatial
quantization for feature extraction, which hinders the model
from locating small-size objects. We replace RoI pooling with
RoI align that faithfully preserves exact spatial locations. After
RoIs have been collected, distributed, and fed to the RoI align
layer, the FRCNN output receives these RoIs and performs
class-specific regression and classification.

B. Horizontal and Rotated Object Detection

The RPN output provides coarse proposals to the sec-
ond stage for subsequent processing. In the second stage,
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Fig. 2. Overall architecture of the FPN.

traditional methods perform bounding box regression with
horizontal coordinates [5]

tx = (x − xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha). (1)

t �
x = (x � − xa)/wa, t �

y = (y � − ya)/ha

t �
w = log(w�/wa), t �

h = log(h�/ha) (2)

where x, y, w, and h denote the two coordinates of the box
center, width, and height, respectively. Variables x , xa , and x �
denote the predicted box, anchor box, and ground-truth box
respectively (likewise for y, w, and h). This can be thought of
as bounding-box regression from an anchor box to a nearby
ground-truth box. However, it will suppress the detection of
densely arranged objects with arbitrary orientations over the
horizontal line during the NMS postprocessing. Therefore,
based on the horizontal representation, we use (x, y, w, h, θ)
to represent arbitrary-oriented rectangle, where θ is defined
as the acute angle to the x-axis, ranging in [−π/2, 0]. When
employing rotated coordinates, we need to calculate the inter-
section of the union (IoU) between skew bounding boxes
in the NMS step. To deal with this problem, [31] proposes
an implementation of skew IoU computation with thought to
triangulation. Here, the skew IoU computation-based rotation
nonmaximum suppression (R-NMS) is used as an alternative
postprocessing operation. For the regression of the rotation
bounding box, we follow the same way used in the aforemen-
tioned horizontal regression and further introduce regression
for θ [14]

tθ = θ − θa, t �
θ = θ � − θa. (3)

Likewise, θ , θa , and θ � denote the predicted box, anchor box,
and ground-truth box, respectively.

C. Branch Expansion

In order to adapt the model to detect the new classes,
we could expand a new branch to detect the objects of new
classes. Analogously to [19], we add sibling layers for the new
classes in the last fully-connected layers for object classifi-
cation and bounding box regression. Especially, as displayed
in Fig. 1, the RPN output and FRCNN output expand a
new branch, i.e., fully-connected layers for regressing and
classifying objects of the new classes. The new layers are
initialized randomly in the same way as the corresponding
layers in FPN. On the other hand, the object distributions
between the old and the new tasks may be largely different.
Creating a separate branch could help the model to keep its
distinct distribution.

D. Knowledge Distillation

In addition to adding the new branch for detecting the
objects of new classes, we want to preserve the detection
ability of the old task and detect the old classes in the old
branch. With only the images of new classes, the outputs
of the old branch should approximate the outputs of the
frozen model in both the RPN output and the FRCNN output.
For the RPN output, we first record outputs of the frozen
model including classification output Pfrozen_RPN and regres-
sion output Bfrozen_RPN. Combining Pfrozen_RPN with Bfrozen_RPN,
the frozen model performs nonmaximum suppression (NMS)
and generates RoIsfrozen. The RoI align layer transforms
RoIsfrozen into the fixed size and feeds them into the FRCNN
output. When updating the model, we enforce classification
output Pold_RPN and the regression output Bold_RPN of the old
branch in the RPN output to approach the recorded Pfrozen_RPN

and Bfrozen_RPN, respectively. The smooth L1 loss is used to
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measure the discrepancy, and the approximation loss in the
RPN output is defined as

Lossold_RPN = smooth L1 (|Pfrozen_RPN − Pold_RPN|)
+ smooth L1 (|Bfrozen_RPN − Bold_RPN|). (4)

The smooth L1 loss is a robust L1 loss that is less sensitive
to outliers than the L2 loss, which is defined as

smooth L1(x) =
{

0.5x2, if |x | < 1,

|x | − 0.5, otherwise.
(5)

Similarly, in the FRCNN output, we enforce the outputs
of the old branch in the training model to mimic the cor-
responding outputs in the frozen model. The FRCNN output
receives RoIs as its input to perform fine-grained classification
and regression. There exist three different choices of RoIs
that fed into the old branch of the FRCNN output in the
current training model: RoIsfrozen from the frozen model,
RoIsold from the old branch, and RoIsnew from the new branch.
In the experiments, we evaluate the different RoIs selection
methods and find that RoIsfrozen is the best among them. The
classification output Pfrozen_FRCNN = [ p̂1, p̂2, . . . , p̂m], where
m stands for the number of the old classes, and the regression
output Bfrozen_FRCNN of the FRCNN output in the frozen model
is also recorded. With RoIsfrozen as input, the old branch of the
FRCNN output produces the classification output Pold_FRCNN =
[p1, p2, . . . , pm] and the regression output Bold_FRCNN. We
modify the softmax probabilities p̂i and pi into

p̂�
i = p̂1/T

i∑m
i p̂1/T

i

and

p�
i = p1/T

i∑m
i p1/T

i

respectively, where T is the hyperparameter of temperature.
Such modification could increase the weight of smaller logit
values and encourage the network to better encode similarities
among classes. The cross-entropy loss is applied to these
modified softmax probabilities, and we acquire the following
cross-entropy distillation loss:

CE_dist (Pfrozen_FRCNN, Pold_FRCNN)= −
m∑
i

p̂�
i log p�

i (6)

where Pfrozen_FRCNN and Pold_FRCNN are the classification out-
puts. The approximation loss in the FRCNN output is defined
as

Lossold_FRCNN

= smooth L1 (|Bfrozen_FRCNN − Bold_FRCNN|)
+ CE_dist (Pfrozen_FRCNN, Pold_FRCNN). (7)

The overall approximation loss used for preserving the knowl-
edge of the old task is

Lossold = Lossold_RPN + Lossold_FRCNN. (8)

E. Multitask Training

Multitask learning is used to complete the first task of
detecting the objects of new classes and the second task of
preserving the detection ability of the old classes. Following
the commonly used setting in FPN, the loss of the first task
used for training is the combination of cross-entropy loss and
smooth L1 loss, respectively, from the RPN output and the
FRCNN output of the expanded new branch

Lossnew = cross − entropy (Pnew_RPN, Pnew_GT)

+ smooth L1 (|Bnew_RPN − Bnew_GT|)
+ cross − entropy (Pnew_FRCNN, Pnew_GT)

+ smooth L1 (|Bnew_FRCNN − Bnew_GT|) (9)

where Pnew_GT and Bnew_GT represent the one-hot label and
the bounding box of the ground truth on the new task.
Pnew_RPN, Pnew_FRCNN, Bnew_RPN, and Bnew_FRCNN are classifi-
cation and regression outputs of the new branch in the RPN
output and the FRCNN output, respectively.

The loss of the second task for training the old branch in
the model is defined in (8). Therefore, the total loss is defined
as

Losstotal = λoLossold + Lossnew. (10)

where λo is the hyperparameter that balances the significance
between the old and new tasks. The standard stochastic gradi-
ent descent (SGD) with momentum is applied to optimize the
model parameters. Notably, the RPN output and the FRCNN
output share the feature extraction module, and SGD optimizes
all parameters of the updating model including the feature
extraction module, the RPN output, and the FRCNN output.
During training, we first train the parameters of the new branch
both in the RPN output and the FRCNN output to converge
while fixing the rest parameters. We refer to this step as the
warm-up step. After the warm-up step, the whole parameters in
the model are further optimized. The experiments will verify
the effectiveness of the warm-up step. The overall training
procedure is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the
proposed method on two remote sensing image data sets:
DOTA [11] and DIOR [12]. In the ablation study, some crucial
factors in the training process are evaluated, e.g., the choice
of RoIs used for calculating the outputs of the old branch in
the FRCNN output and the choice of loss functions used for
measuring the distance between two probability distributions
in the RPN output. In comparative experiments, two state-of-
the-art incremental object detection methods in [19] and [20]
are used as reference methods. Our method is implemented
on the Detectron platform.1 Regarding the training algorithm,
we empirically set the batch size as 2, the momentum as 0.9,
and the number of iterations as 60 000. The initial learning
rate is 0.0025 and multiplies 0.1 every 20 000 iterations. The
detection results are recorded when IoU between the predicted

1https://github.com/facebookresearch/Detectron
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Algorithm 1 Proposed Incremental Training Algorithm for
Object Detection
Input:

Xn : images of the new task
Pn, Bn : the label and the bounding box of the ground
truth on the new task
C N N f rozen : the frozen model trained on the old task

Output: Optimal parameters θ∗ of the updating model
C N Nupdating

Initialize:
Pf rozen, B f rozen : classification outputs and regression
outputs of the frozen model C N N f rozen(Xn) with Xn as
input
RoIs f rozen : RoIs produced from the RPN Output in the
frozen model C N N f rozen(Xn)
Warm-up Step:

1: Randomly initialize parameters of the new branch in the
C N Nupdating

2: repeat
3: Using Pn and Bn, training parameters of the new branch

and fixing the rest parameters in the C N Nupdating

4: until convergence
Training Step:

5: repeat
6: Updating whole parameters θ of the C N Nupdating by

arg minθ (λo Lossold + Lossnew)
7: until convergence
8: return θ∗

bounding box and the annotated bounding box is equal to
or greater than 0.5. Unless otherwise specified, the following
experiments employ the horizontal bounding box, as the
compared incremental object detection methods are based on
the horizontal box regression, and only the DOTA data set
contains the rotated box annotations. However, we give a
separate experiment on DOTA to compare the horizontal and
rotated bounding boxes for object location.

A. Remote Sensing Data Sets

DOTA [11] contains 2806 images and 188 282 instances
annotated with horizontal and rotated bounding boxes, divided
into the training set (1411 images), the validation set
(458 images), and the test set (937 images). The image size
ranges from 800 × 800 to 4000 × 4000, and we crop
it into patches with a size of 800 × 800 in our experi-
ments. DOTA includes 15 categories: plane, baseball-diamond
(BD), bridge, ground-track-field (GTF), small-vehicle (SV),
large-vehicle (LV), ship, tennis-court (TC), basketball-court
(BC), storage-tank (ST), soccer-ball-field (SBF), turntable
(TA)/roundabout, harbor, swimming-pool (SP), and helicopter
(HC). In our class-incremental setting, the first eight classes
are taken as the old classes for the old task, while the latter
seven classes are the new classes belonging to the new task.
The training set is used to train our model, while the validation
set is used as our testing set as the label of the original test
set is unavailable.

Fig. 3. mAP performance on the DIOR data set as the value of λo changes.

DIOR [12] includes 11 738 images with the size of 800 ×
800, divided into the training set (5862 images), the validation
set (5853 images), and the test set (11 738 images). DIOR
annotates 190 288 instances with horizontal bounding boxes
and incorporates 20 classes: airplane, baseball-field (BD),
bridge, GTF, vehicle, ship, TC, airport, chimney, dam, BC,
ST, harbor, expressway toll station (ETS), expressway service
area (ESA), golf course (GC)/golf field, overpass, stadium,
train station (TS), and windmill (WM). The first ten classes are
used for the old task, while the latter ten classes are regarded
as the new classes of the new task. We combine the training
set and the validation set to train our model and test the model
on the test set.

B. Ablation Study

1) Different Values of λo: The hyperparameter λo in loss
function (10) balances the importance of the old and new
tasks. We perform experiments on the DIOR data set with
the different values of λo to analyze its influence on the old
and new classes. The results shown in Fig. 3 demonstrate
that, when the weight of old classes is little (λo = 0.1),
the new classes are easier to learn, but the old classes are easily
forgotten. When the weight of old classes is large (λo = 2, 5),
it impedes learning the new classes but well preserves the
detection capability on old classes. As λo becomes to be
larger, the performance of new classes decreases quickly,
but the performance of old classes increases slowly. When
λo = 1, the average results of old and new classes approximate
the corresponding joint-training counterparts. λo = 1 is a
good tradeoff between learning new classes and preventing
catastrophic forgetting, so, in all other experiments in this
article, λo is fixed to 1.

2) Different Incremental Learning Strategies: When
encountering the class-incremental problem, we have several
strategies to update the old model and its parameters. Fig. 4
shows the four typical incremental learning methods, where
θs represents parameters of the shared feature extraction
module, θo stands for parameters of the output branch for
old classes, and θn denotes parameters of the output branch
for new classes. Case 1 only fine-tunes the parameters of the
new branch, θn, while the rest parameters stay unchanged. In
addition to θn , case 2 further fine-tunes the parameters of the
shared feature extraction module, θs . Case 3 updates whole
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Fig. 4. Different training strategies of class-incremental learning. θs represents the parameters of the shared feature extraction module, θo stands for the
parameters of the output branch for old classes, and θn denotes the parameters of the output branch for new classes. Case 1: only the parameters of the new
branch are updated. Case 2: the parameters of the feature extraction module and the new branch are updated. Case 3: the whole parameters are updated with
joint-training. Case 4: the whole parameters are updated with the proposed incremental learning method.

TABLE I

DETECTION RESULTS (MAP) WITH DIFFERENT CLASS-INCREMENTAL

LEARNING STRATEGIES

parameters from scratch by utilizing the training samples of
old and new classes. With the proposed incremental learning
algorithm, case 4 trains all parameters with outputs from the
frozen model and the training samples of the new classes.
The results are displayed in Table I, from which we can find
that our incremental detection method without the training
samples of old classes (Case 4) achieves similar results as
the method of retraining model from scratch (Case 3), and
both Cases 1 and 2 have very poor detection performance
for old classes or new classes. Case 3, also represented as
joint-training, is time-consuming due to learning from scratch
and requires massive storage due to keeping all training
samples from both old and new classes in hand. However,
it is the upper bound for the class-incremental learning
problem, so we used it as a baseline method in the later
comparative experiments.

3) Different Regions of Interest: To preserve the detection
capability learned on the old task, the outputs of the old
branch should approximate the outputs of the frozen model
with the only images of new classes. When computing the

TABLE II

DETECTION RESULTS (MAP) WITH DIFFERENT ROIS FED INTO THE OLD

BRANCH IN THE FRCNN OUTPUT

outputs of the old branch in the FRCNN output, we need
to decide which aforementioned RoIs (RoIsfrozen, RoIsold,
and RoIsnew) to be used as the input. Table II displays the
detection results of using different RoIs. In Table II, RoIsfrozen

achieves the best results compared with RoIsold and RoIsnew.
Therefore, we adopt RoIsfrozen extracted from the frozen model
as the input to the old branch of the FRCNN output in our
experiments.

4) Effectiveness of the Warm-Up Step: In our training
process, before we start to update the whole parameters of
the model, the warm-up step first trains the parameters of
the new branch both in the RPN output and in the FRCNN
output to converge with the rest parameters fixed. To verify the
effectiveness of the warm-up step, we replace it with Gaussian
initialization. Notably, the numbers of total iterations of two
initialization methods are set to be equal. Their results are
exhibited in Table III, from which we can observe that the
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TABLE III

DETECTION RESULTS (MAP) WITH DIFFERENT INITIALIZATIONS OF
PARAMETERS IN THE NEW BRANCH AT IOU = 0.5

TABLE IV

DETECTION RESULTS (MAP) WITH DIFFERENT LOSSES FOR MEASURING
THE DISTANCE BETWEEN TWO PROBABILITY DISTRIBUTIONS IN THE

RPN OUTPUT

warm-up step helps to reach slightly better performance in
most cases.

5) Different Losses for Measuring the Distance Between
Two Probability Distributions in the RPN Output: Considering
the binary classification in the RPN output, the sigmoid
function is usually used to indicate the probabilities of the
candidate proposals. To measure the distance between two
probability distributions of the frozen model and the old
branch of the incremental model, two popular loss functions,
smooth L1 loss and cross-entropy loss, are compared. Table IV
displays the experimental results. From Table IV, it can be
seen that two forms of losses achieve similar results, and
smooth L1 loss is slightly better than cross-entropy loss.
Therefore, in our experiments, we adopt a smooth L1 loss.

6) Algorithm Stability: To validate the stability of the pro-
posed algorithm, we randomly assign old and new classes from
the DIOR data set and repeat class-incremental experiments
five times independently. The detection results (mAP) of old,
new, and entire classes, respectively, are shown in Table V.
Although the results on old and new classes vary to some
extent along with the assignment of old and new classes,
the results on entire classes are very similar, and their average
mAP approximates that of the joint-training method.

C. Incremental Detection With Rotated Box Regression

To tackle the problems of arbitrary orientation and dense
arrangement, we further implement the proposed incremental
learning algorithm based on the rotated bounding box. Espe-
cially, we replace the horizontal coordinates with the rotated
bounding box in the output layer and perform the rotation
detection described in Section III-B. Since DIOR lacks the
rotated box annotations, we conduct the comparative experi-
ments on the DOTA data set. Table VI shows the experimental
results, in which MAPs are calculated with the horizontal box
annotations and the rotated box annotations, respectively, for
horizontal and rotated detections. Fig. 5 shows an example of

TABLE V

DETECTION RESULTS (MAP) BY RANDOMLY ASSIGNING OLD AND NEW
CLASSES FROM DIOR

TABLE VI

COMPARATIVE DETECTION RESULTS (MAP) BETWEEN ROTATED AND

HORIZONTAL BOUNDING BOXES

Fig. 5. Detection results of the proposed method with rotated bounding
box on DOTA. (a) and (b) Results of the old task on LV and SV. (c) and
(d) Results of the new task on harbor. (a) and (b) Rotated detection. (b) and
(d) Ground truth.

incremental detection with the rotated bounding box, where
two old classes, LV and SV, are arbitrarily orientated and
closely arranged, and a new class harbor also appears in
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TABLE VII

COMPARATIVE DETECTION RESULTS (MAP) OF PEER METHODS AT IOU = 0.5. DIFF MEANS THE DIFFERENCE
OF EACH APPROACH FROM ITS CORRESPONDING JOINT-TRAINING RESULTS

TABLE VIII

DETECTION RESULTS ON EACH OLD CLASS OF DOTA

arbitrary orientations. It can be found that the detection with
the rotated bounding box is suitable for detecting objects with
arbitrary orientation and dense distribution.

D. Comparison With State-of-the-Art Methods

In order to show the advantage of the proposed method over
other related works in class-incremental object detection, two
state-of-the-art methods [19], [20] are chosen for evaluation.
Compared with our approach, the first approach (abbreviated
as Fast-IL) [19] uses the traditional EdgeBoxes or MCG
method for generating class-agnostic RoIs, and the second
approach (abbreviated as Faster-IL) [20] reduces the discrep-
ancy of the feature map before the classifier layer in RPN
between the frozen model and the training model to preserve
the old detection capability. The proposed method adopts
FPN as the backbone structure (abbreviated as FPN-IL-our),
as FPN can detect objects of various scales in different layers
of the feature pyramid. It evolves the separate branches for
the old and new tasks and computes the discrepancies of
the classification and regression outputs in RPN between the
frozen model and the training model. We carefully follow the
specifications from these compared articles for their settings
and parameters. Table VII records the detection results of
all three compared methods, and Tables VIII, IX, X, and XI
further elaborate on the results on each class.

In Table VII, concerning the joint-training outcomes, Faster
R-CNN is better than Fast R-CNN by introducing RPN,
and FPN reaches the best results. When adapting to the
class-incremental problem, Fast-IL preserves the detection
ability on the old task but misses many objects on the new task.
Conversely, Faster-IL fails to maintain the detection capability
on the old task but detects well on the new task compared with
its corresponding joint-training results. In general, Faster-IL
outperforms Fast-IL on both of the old and new tasks. The
proposed method, FPN-IL-our, not only attains the best results
but also is the closest to its joint-training counterpart, which
demonstrates its effectiveness of incremental learning. As
observed from Table VIII, Fast-IL and Faster-IL detect poorly
on SV and LV. However, FPN-IL-our improves greatly on
these two categories, especially for SV, which verifies that
FPN-IL-our is more robust to different scales of targets.
We can find similar detection results of the vehicle in Table X.
Another finding in Table VIII and X is that FPN-IL-our detects
better than Fast-IL and Faster-IL on ship that arranges densely
and closely.

The proposed method is superior to other compared methods
due to two factors: robustness to various object scales and
withstanding to catastrophic forgetting. We exemplify these
two factors and illustrate them in Figs. 6 and 7. Fig. 6(a)–(d)
show the detection results of the old task on LV and SV in
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TABLE IX

DETECTION RESULTS ON EACH NEW CLASS OF DOTA

TABLE X

DETECTION RESULTS ON EACH OLD CLASS OF DIOR

the DOTA data set. Although the sizes of targets in these two
old classes are largely different, our method still obtains the
best results. Various object scales also appear in Fig. 6(e)–(h).
Our method not only detects each instance of BC from the
new task but also discovers each instance of TC and SV from
the old task. Similar findings can be observed from Fig. 7 on
the DIOR data set. Fig. 7(a)–(d) display the detection results
on three old classes: baseball-field (BD), ground-track-field
(GTF), and TC. It is obvious that our method successfully
avoids catastrophic forgetting and is more robust to different
object scales compared with other methods. As observed from
Fig. 7(e)–(h), our model successfully locates each instance of
ST from the new task, which is densely and closely arranged.

V. DISCUSSION

In the experiments, we first verify several pivotal factors
of the proposed method and then compare our method with
two state-of-the-art incremental object detection approaches
on two commonly used remote sensing data sets. To over-
come problems of objects appearing in arbitrary orientations
and cluttered arrangements, we further replace the horizon-
tal bounding box with the rotated bounding box in the
proposed incremental learning algorithm. The results have
demonstrated the effectiveness of our proposed method. How-
ever, our work in this article focuses on how to deal with

the incremental learning problem without the training sam-
ples of the old classes, so the other techniques for further
improving the detection performance are retained for future
study.

The problem that we address here is also related to few-shot
learning. Few-shot learning aims to adapt the model to recog-
nize unseen novel classes using very few training samples,
while the model’s recognition performance on the old classes
is not considered. Comparatively, class-incremental learning
learns new classes and preserves prior knowledge of old
classes. Class-incremental learning not only needs to achieve
competitive performance in new classes like few-shot learning
but also tries to avoid catastrophic forgetting. When the
number of training samples of new classes is very few for
class-incremental learning, few-shot learning is also required.
Therefore, the combination of class-incremental learning and
few-shot learning has broad applications, which learns new
classes with a small number of training examples and pre-
serves the previously learned knowledge of old classes without
catastrophic forgetting [44], [45]. In our future work, the incre-
mental few-shot learning in remote sensing image analysis will
be a possible topic.

On the other hand, class-incremental learning under the
fully supervised setting requires manually annotated bounding
boxes around each object of new classes. It is generally
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Fig. 6. Detection results on DOTA with three different methods. (a)–(d) Results of the old task on LV and SV. (e)–(h) Results on BC of the new
task, SV of the old task, and TC of the old task (a) Fast-IL. (b) Faster-IL. (c) FPN-IL-our. (d) Ground truth. (e) Fast-IL. (f) Faster-IL. (g) FPN-IL-our.
(h) Ground truth.

Fig. 7. Detection results on DIOR with three different methods. (a)–(d) Results of the old task on baseball-field (BD), GTF, and TC. (e)–(h) Results of the
new task on storage-rank (ST). (a) Fast-IL. (b) Faster-IL. (c) FPN-IL-our. (d) Ground truth. (e) Fast-IL. (f) Faster-IL. (g) FPN-IL-our. (h) Ground truth.

time-consuming, expensive, and, sometimes, even unreli-
able to obtain such accurate manual annotation. With the
aid of studies of weakly supervised object detection in

remote sensing images [46], [47], a more feasible way is to
employ class-incremental detection with image-level annota-
tions, which is also a possible topic in our feature work.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 24,2022 at 16:19:14 UTC from IEEE Xplore.  Restrictions apply. 



5600413 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE XI

DETECTION RESULTS ON EACH NEW CLASS OF DIOR

VI. CONCLUSION

In this article, we present a new class-incremental object
detection approach under a deep learning frame, which learns
to detect the new classes and maintains the ability to recognize
the old classes in the absence of the original training data
of the old classes. To overcome the problem of catastrophic
forgetting, we expand the new branch for classification and
regression of the objects in new classes and transfer the
distilled knowledge from the frozen model learned from the
old classes into the old branch. Using the multitask learning
strategy, the total loss is minimized that balances the interplay
between detecting the new classes and preserving the detection
capability of the old classes. The proposed incremental training
algorithm can be easily extended to other powerful deep
learning-based detectors. Comparative experiments on the two
remote sensing data sets demonstrate the superiority of our
method, especially for the objects with various scales, arbitrary
orientations, and dense distributions.
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