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ABSTRACT

Hyperspectral unmixing aims at decomposing a hyper-
spectral image (HSI) into a number of constituted materials
and associated proportions. Recently, nonnegative tensor fac-
torization (NTF) based methods have been proved effective
and natural for hyperspectral unmixing owing to their virtue
of representing an HSI without any information loss. How-
ever, these methods take an HSI as a whole, partly ignoring
the local information in distinct local regions. In addition,
HSIs are high likely to be disturbed by various noise, mak-
ing the global information unnecessarily reliable. To allevi-
ate these drawbacks, we propose a superpixel-based matrix-
vector nonnegative tensor factorization (S-MV-NTF) method
for hyperspectral unmixing, where both the global informa-
tion and local information are taken into consideration. In this
method, the HSI is firstly partitioned into numerous superpix-
els, homogeneous regions with adaptive sizes and compact
boundaries, representing the local spatial structure informa-
tion. Then, such local information is integrated to the tensor
factorization to make the pixels lying in the same superpixel
share similar abundances. Experimental results on synthetic
data and real-world data show that the proposed method dom-
inates the state-of-the-art methods.

Index Terms— Hyperspectral unmixing, joint spectral-
spatial information, superpixel, nonnegative tensor factoriza-
tion,

1. INTRODUCTION

Hyperspectral imagery (HSI), containing hundreds of contin-
uous narrow spectral bands, has been widely applied in vari-
ous fields [1]. Many pixels cover more than one kind of ma-
terials because of sensor’s limited spatial resolution. The ex-
istence of these pixels has caused a range of difficulties in
real-world applications. Hyperspectral unmixing aims to de-
tect the existence of a collection of constitute materials, i.e.,
endmembers, and estimate their corresponding fractions, i.e.,
abundances. It offers an attractive way to tackle this problem.
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From the statistic analysis point of view, this problem can
be considered as blind source separation problem. Nonnega-
tive matrix factorization (NMF) [2] is effective to solve this
problem. Nevertheless, there exist many local optimal solu-
tions because of its non-convex objective function. In order
to make the model more powerful, various constraints incor-
porating auxiliary prior information are added to NMF. Con-
sidering hyperspectral images vary smoothly in its spatial do-
main, Lu et al. [3] proposed a manifold regularized sparse
NMF (MRS-NMF) to make the pixels in a low-dimensional
submanifold behave similarly. In [4], hypergraph structure
was employed to model more complicated similarity relation-
ship among the spatial nearby pixels. Tong et al. [5] proposed
a region-based NMF (R-NMF) method to keep the structure
consistency within the regions while discriminating the dif-
ferences between regions.

Compared with converting a 3D HSI into a 2D matrix
form, a third-order tensor is more natural in representing HSI.
Recently, Qian et al. [6] proposed a matrix-vector nonnega-
tive tensor factorization (MV-NTF) for unmixing. This model
factorizes an HSI into R rank (L, L, 1) component tensors
where each one is the outer product of a low rank matrix
and a vector, representing abundance and endmember respec-
tively. Experimental results demonstrate that this method out-
performs many NMF based unmixing approaches. However,
MV-NTF takes an HSI as a whole so that the detailed spatial
structure information can not be fully described. In addition,
in real-world applications, the tensor data suffers from some
changing cases, such as low-SNR, bare identifiability and ill-
condition [7], which makes tensor decomposition fail to be
unique.

Embedding local spatial information to tensor factoriza-
tion is an effective manner to alleviate the drawbacks of NTF.
For example, in [8], a 3D total variation and L1 sparsity regu-
lation were incorporated into low rank Tucker decomposition
to remove the sparse noise and Gaussian noise simultaneously
while preserving the spatial structure and spectral signatures
of HSI. In addition, superpixel, which groups similar local
pixels into meaningful homogeneous regions, provides an ef-
fective manner to obtain more elaborate spatial information.
Owing to its superior advantages in representing spatial struc-
ture information while matching the boundary of distinct se-
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mantic region, superpixel has been widely applied in hyper-
spectral denoising [9] and classification [10].

In this paper, in order to alleviate the drawbacks of MV-
NTF, a superpixel-based matrix-vector nonnegative tensor
factorization (S-MV-NTF) method is proposed for hyper-
spectral unmixing. As shown in Fig. 1, this approach first
uses simple linear iterative clustering (SLIC) [11] to seg-
ment the HSI into several superpixels with adaptive sizes and
shapes. Then, two similarity graphs are constructed to model
the similarity in superpixels. Finally, these two similarity
graphs are embedded into the original MV-NTF to make the
pixels in the same superpixel share similar abundances. Ex-
perimental results on synthetic data and real-world data show
that the proposed method outperforms alternative methods.
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Fig. 1: The framework of S-MV-NTF.

2. RELATED WORK

As mentioned in [6], MV-NTF is consistent with linear spec-
tral mixture model (LMM). Mathematically, its objective
function can be formulate as:

min
A,B,C

1

2
‖Y −

R∑
r=1

(ArB
T
r )◦cr‖2F +

δ

2
‖1I×J−ABT‖2F (1)

where Y ∈ RI×J×K represents the observed 3D HSI with
I × J pixels and K bands, ArB

T
r is the abundance map of

rth endmember, approximately represented by two low-rank
matrices Ar and Br, cr is the rth endmember, 1I×J is a ma-
trix filled with all ones and δ ∈ R+ balances the tradeoff
between the reconstruction error and sum-to-one constraint.

Though this approach performs unmixing under tensor
notation, it takes an HSI as a whole, ignoring the detailed
spatial structure information of distinct regions. To facili-
tate better performance, auxiliary local spatial information

exploited from the HSI should be integrated to tensor factor-
ization. This will be presented in the next section.

3. SUPERPIXEL BASED MATRIX-VECTOR NTF
FOR HYPERSPECTRAL UNMIXING

In this section, we give the details of the proposed method. It
integrates the local information represented by superpixels to
the original MV-NTF method to make the pixels in the same
superpixel share similar abundances. The corresponding sim-
ilarity graph construction and update rules are also discussed.

3.1. Superpixel guided similarity graph construction

In this paper, we adopt SLIC [11] to generate superpixels be-
cause of its virtue of good accuracy, high computational speed
and boundary recall properties. Two similarity graphs Wh

and Wv , representing horizontal and vertical spatial relation-
ship between pixels, are built based on these superpixels to
make the pixels in the same superpixel behave similarly. Tak-
ing the horizontal orientation for example, mean feature vec-
tor Yi,s of the pixels belonging to the s-th superpixel in the
i-th row is given by:

Yi,s =
1

Ni,s

J∑
j=1,l(i,j)=s

Yi,j (2)

where Ni,s denotes the number of such pixels. An edge eip is
built between i-th row and j-th row, whose weight is :

w(eip) =
1

N

J∑
s∈S

exp−‖Yi,s − Yp,s‖
2

σ
(3)

where S denotes the superpixels that exist in both i-th row
and p-th row and N represents associated total number. In the
same way, the vertical similarity graph Wv can also be con-
structed for B = [B1 · · ·BR] to represent the vertical spatial
structure information.

3.2. Proposed method

With the obtained weight matrix Wh, we can enforce the sim-
ilarity between rows in Ar, which is formulated by:

1

2

I∑
i=1

I∑
p=1

‖Ai
r −Ap

r‖2W
ip
h = Tr(LhArA

T
r ) (4)

where Tr denotes the trace of a matrix, Dh is a diagonal ma-
trix where Dii

h =
∑

j W
ij
h and Lh is a laplacian matrix of

Wh which is represented as Lh = Dh−Wh. Extending this
constraint to A = [A1 · · ·AR], the regularization term is

1

2

R∑
r=1

Tr(LhArA
T
r ) = Tr(LhAAT) (5)
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In the same way, adding the similarity constraint to the rows
in Br, we can get:

1

2

R∑
r=1

Tr(LvBrB
T
r ) = Tr(LvBBT) (6)

Incorporating these two regulation terms into the MV-NTF
model, the goal now becomes minimizing the following cost
function:

min
A,B,C

1

2
‖Y −

R∑
i=1

ArB
T
r ◦ cr‖2F +

δ

2
‖1I×J −ABT‖2F

+
α

2
Tr(LhAAT) +

µ

2
Tr(LvBBT)

(7)

where α ∈ R+ and µ ∈ R+ are two regularization parameters
to control two constraints on A and B respectively. Under
the framework of multiplicative update, the associated update
rules are given by:

A←A. ∗ (YT
(1)M + δ1I×JB + αWhA)./

(AMTM + δABTB + αDhA)
(8)

where M = B�̄C.

B←B. ∗ (YT
(2)M + δ1I×J

TA + µWvB)./

(BMTM + δBATA + µDvB)
(9)

where M = C�̄A.

C← C. ∗YT
(3)M./(CMTM) (10)

where M = [(A1

⊙
B1)1L · · · (AR

⊙
BR)1L].

4. EXPERIMENTS

Here, we conduct experiments on synthetic data and real-
world data to evaluate the performance of the proposed
method. Manifold regularized sparse NMF (MRS-NMF) [3],
hypergraph regularized L1/2-NMF (HGL1/2-NMF) [4],
region-based NMF (R-NMF) [5] and matrix-vector NTF
(MV-NTF) [6] are selected as alternative methods to com-
pare with proposed method. The spectral angle distance
(SAD) and root mean squared error (RMSE) defined in [5]
are adopted to evaluate the unmixing performance.

4.1. Experiments on Synthetic Data

The synthetic data is generated by using a modified version of
the method presented in [5]. Six pure signatures (Carnallite,
Ammonio-jarosite, Almandine, Brucite, Axinite and Chlonte)
are selected from USGS library to generate endmembers. For
abundance generation, we follow the following steps. First, a
z2 × z2 synthetic image is dividend into z2 patches, and each
one is a sub-image with z × z pixels. Then, each pixel of one
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Fig. 2: SAD and RMSE with respect to the noise level.
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Fig. 3: Abundance maps extracted by S-MV-NTF

region is filled with two kinds of randomly selected endmem-
bers whose proportions are set as β and 1 − β respectively.
Finally, a (z + 1)× (z + 1) lower pass filter is applied to the
image to get a highly mixed image. To evaluate the robustness
of proposed method under different noise levels, the obtained
clean HSI is disturbed by zero-mean white Gaussian noise
with pre-specified signal-to-noise ratio (SNR) that is defined
as

SNR = 10 log10

E[yTy]

E[eTe]
(11)

where y and e are the clean signal and the noise at a pixel.
E[·] denotes the expectation operator.

Now, we show the robustness of five methods to different
noise levels. The clean HSI that is generated with z = 8,
β = 0.8 is disturbed by noise of various SNRs, 15dB, 20dB,
25dB, 30dB and∞ (noise-free). Fig. 2 shows the experimen-
tal results. The bars and error lines stand for the mean SAD,
mean RMSE and their corresponding standard deviations, re-
spectively. It can be seen that the standard deviations of ten-
sor based methods are less than those of the other methods,
which shows that tensor based methods are more stable. On
the other hand, the proposed method performs the best among
all the methods in all the cases, which maybe because super-
pixel provides an efficient way for S-MV-NTF to exploit local
spatial correlation in an HSI. This contributes S-MV-NTF to
a better estimate of abundances and endmembers.

4.2. Experiments on Real-world Data

We also conduct experiment on the widely used Jasper Ridge
dataset. It is a 512 × 614 image, which was collected by
the airborne visible/infrared imaging spectrometer (AVIRIS)
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Table 1: Means and standard deviations of the SAD on Jasper Ridge Data
Algorithm MRS-NMF HGL1/2-NMF R-NMF MV-NTF S-MV-NTF

Tree 0.0452± 0.02% 0.0755± 1.02% 0.0371±0.31% 0.2119± 1% 0.2121± 0.69%
Water 0.1112±0.48% 0.1±1.11% 0.1596±0.59% 0.2105±3.93% 0.1846±7.64 %
Dirt 0.1069±0.70% 0.2221±20.72% 0.0864±0.55% 0.1185±4.16% 0.1118±4.90%

Road 0.8329±7.97% 0.6111±31.54 % 0.7190±4.56% 0.1841±3.51% 0.1822±2.04%
Mean 0.2740±2.17% 0.2522±3.30% 0.2505±1.03% 0.1813±1.47% 0.1727±0.12%

sensor over Jasper Ridge in central California, USA. After
low SNR and water-vapour absorption bands are removed, a
sub-image with 100× 100 pixels and 198 bands is selected to
conduct unmixing in our experiment. In this experiment, we
set there are four distinct target of interests, i.e. soil, water,
tree, road.

The SAD comparison is shown in Table 1. From the ta-
ble, we can see that S-MV-NTF performs best among all the
methods, especially in the road signature, which may due to
the fact that the borders between road and other targets are
delicate, and superpixel can adaptively group these pixels into
irregular regions so that the spatial structure information can
be well incorporated into tensor factorization. A visual com-
parison is shown in Fig. 3, where Figs. 3(a)-(d) represent tree,
water, dirt and road respectively. As can be seen, all the abun-
dance maps are perceptually smooth.

5. CONCLUSION

In this paper, an S-MV-NTF method is proposed for hyper-
spectral unmixing, where the accurate and detailed spatial
structure information represented by superpixels is embedded
into the original MV-NTF method. In this method, super-
pixels are firstly generated by SLIC algorithm, then, theses
superpixels are used to construct similarity graphs. Finally,
these graphs are embedded into two factor matrices to enforce
the abundances in the same superpixels to be smooth. Exper-
imental results on synthetic data and real-world data demon-
strate that our method outperforms other baseline methods.
In our future work, other regularizations such as sparsity reg-
ularization, and cross-mode similarity regularization will be
studied to improve the unmixing performance.
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