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ABSTRACT

Multi-label remote sensing image classification is a signifi-
cant yet difficult task due to intra-class variations and label
dependencies among land-cover classes. In this paper, we
propose a novel multi-label classification model based on de-
formable convolutions and graph neural networks. Specifical-
ly, we first use deformable convolutions to learn image fea-
tures with geometric transformation invariance and adaptive
receptive field. Then we adopt attention mechanism to ex-
tract label-related image features. After that, a directed graph
is constructed to model the label dependencies, and the label-
related features are fused through graph propagation mech-
anisms. Experiments on UC-Merced and DOTA data sets
demonstrate its effectiveness.

Index Terms— Multi-label classification, Deformable
convolution, Graph neural networks

1. INTRODUCTION

In the traditional single-label task, each image is associated
with a unique semantic label. However, a single label may
be insufficient for annotating the remote sensing scenes with
complex semantic information. Multi-label remote sensing
image classification, which aims to extract elements of inter-
est (e.g., buildings, ships) and generate multiple labels, has
become crucial for understanding remote sensing images.

Compared to the single-label task, the multi-label classifi-
cation is much more difficult due to the overwhelming size of
output space [1]. One feasible solution is using the prior in-
formation of label dependencies. Extensive research has been
devoted to capture label dependencies for natural scene im-
ages. In some recent works, Chen et al. leveraged the graph
structure to explore the label dependencies and utilized graph
convolutional networks (GCNs) to propagate information
between multiple labels [2]. Similarly, in [3] a semantic-
specific graph representation learning model (SSGRL) was
proposed, which incorporates category semantics to guide
learning semantic-specific features and explore their inter-
actions to facilitate multi-label classification. Few attempts
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have been made in the context of multi-label classification
for remote sensing images. In [4], a multi-attention mech-
anism combined with convolutional neural network (CNN)
and recurrent neural network (RNN) was presented, in which
the joint occurrence of multiple land-cover classes is con-
sidered and the attention-based local descriptors is learned.
In [5] a label relation inference module is designed to take
advantage of pairwise label relations to infer multiple labels.
However both of methods do not explicitly model the label
dependencies via prior knowledge. In this paper the complex
dependencies between class labels will be clearly represented
by the graph structure and their interaction will be learned in
a data-driven way.

Moreover, another key challenge of remote sensing image
classification is how to address huge intra-class variations in
the scale, orientation, and shape. CNNs can extract rich and
discriminative features with hierarchically, locally and shared
filtering, but CNNs are inherently limited to model large and
unknown transformations due to its fixed geometric struc-
tures. Deformable convolutional networks [6] adds 2D offsets
to the regular grid sampling locations in the standard convo-
lution, so that dense spatial transformation can be learned for
sophisticated vision tasks. We will use deformable convolu-
tions for extracting the features of remote sensing images.

In summary, this paper propose a novel multi-label clas-
sification model based on deformable convolutional networks
and graph neural networks (GNNs) [7], abbreviated as DCN-
GNN. This method can learn the remote sensing image fea-
tures with geometric transformation invariance and adaptive
receptive field by deformal convolution, construct a graph to
explicitly model label dependencies in remote sensing im-
ages, and utilize GNNs to explore the semantic interaction
among land-cover labels.

2. METHOD

Multi-label classification aims to predict multiple labels cor-
responding to a given remote sensing image. We define X =
{x1,x2, · · · ,xM} as a remote sensing archive that contain-
s M images. Suppose L = {l1, l2, · · · , lN} is a finite label
set that consists of N labels. We assume that each image
x in the archive X is associated with a binary label vector
y ∈ {0, 1}N and each element of y sequentially denotes
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Fig. 1. The framework of DCN-GNN

wether the n-th label ln ∈ L appears in this image or not.
Based on the training samples, we want to train a classifier
that maps new remote sensing images x∗ to the multiple la-
bels y∗. The DCN-GNN framework mainly consists of four
modules: 1) feature extraction; 2) semantic decoupling; 3) se-
mantic interaction and 4) classification. Fig. 1 illustrates the
overall framework of DCN-GNN.

2.1. Feature Extraction

The feature extraction module aims to learn image features
with geometric transformation invariance and adaptive recep-
tive field. We replace the standard convolutional layers in C-
NNs with deformable convolutions. Distinguished from stan-
dard convolutions, deformable convolutions add 2D offsets
to the spatial sampling locations and model various geomet-
ric transformations. These offsets are learned from the input
feature maps by standard convolutional layers. Only with s-
mall amount of additional parameters and computations, de-
formable convolutions can result in noticeable performance
gains. Compared with data augmentation technique, its has
better generalization to new tasks possessing unknown geo-
metric transformations.

2.2. Semantic Decoupling

Once the image features are obtained, the semantic decou-
pling module extracts label-related features via attention
mechanism. In this module, the weights are generated for
different locations in original feature maps, then semantic
features that focus on the related regions of a specific class
label are learned. For an input image x, the feature extraction
module outputs its feature maps fx ∈ RH×W×C , where H ,
W , C are the height, width and channels respectively. For

each label l, a ds-dimensional semantic representation el is
calculated as el = fg(l). fg is the pretrained model for
obtaining word representations such as GloVe, and el is the
word embedding of label l. Then for the location (h,w) in
feature maps, the corresponding C-dimensional feature vec-
tor fxhw and the label embedding el are fused for each label l
as follows:

f̃xl,hw = PT
(
tanh

((
UT fxhw

)
�
(
VTel

)))
+ b (1)

where tanh (·) is the hyperbolic tangent function, U ∈
RC×d1 , V ∈ Rds×d1 , P ∈ Rd1×d2 , b ∈ Rd2 are the pa-
rameters to be learned, � is the element-wise multiplication
operation, and d1, d2 are the dimension of joint embeddings
and output features respectively. Afterwards attention coeffi-
cients α are generated

αl,hw = softmax
(
fa

(
f̃xl,hw

))
(2)

where fa is a fully-connected layer and a softmax function is
used for coefficients normalization. The attention coefficients
indicate the importance of each location for each class la-
bel. Finally, we sum over the original feature maps weighted
by corresponding attention coefficients and obtain the label-
related feature vector:

fl =
∑
h,w

αl,hwf
x
hw (3)

2.3. Semantic Interaction

In this module, we first construct a directed graph G = (V,A).
The node set V = {v0, v1, · · · , vN−1} represents the label-
related features, i.e., each class label l is associated with a
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node vl ∈ V . The edges indicate dependencies between pair-
wise labels, represented by adjacent matrix A with the size
of N × N . Similar to the graph construction method used
in [2], we define such dependencies in the form of prior label
co-occurrence patterns within the data set. The weight of an
edge between vertices vl and vl′ is all′ in A, which refers to
the conditional probability of label l′ if label l appears. Then
we utilize gated GNN (GGNNs) [7] to propagate information
over the graph and generate contextual semantic features. At
time step t, vl has a hidden state ht

l . When t = 0, the hidden
state is initialized with the label-related feature vector fl. In
GGNNs, each node in graph aggregates information atl from
their adjacent nodes at time step t

atl =

[∑
l′

(all′)h
t−1
l′ +

∑
l′

(al′l)h
t−1
l′

]
(4)

Based on the aggregated information atl and the hidden
state ht−1

l at previous time step t − 1, each node updates the
hidden state over time step, formulated as:

ztl = σ
(
Wzatl +Uzht−1

l

)
rtl = σ

(
Wratl +Urht−1

l

)
h̃t
l = tanh

(
Watl +U

(
rtl � ht−1

l

))
ht
l =

(
1− ztl

)
� ht−1

l + ztl � h̃t
l

(5)

where σ (·) is the sigmoid function, Wz , Uz , Wr, Ur, W,
U are the parameters to be learned. The update process is
executed by T times.

2.4. Classification

In this module, the initial and final hidden state are fused and
sent to the multi-label classifier. Specifically, this module can
be formulated as ol = fo

(
hT
l ,h

0
l

)
and sl = fc (ol), in which

fo is a fully-connected layer, ol is the output features cor-
responding to label l, fc is a multi-label classifier and sl is
the confidence of label l. Here we adopt common multi-label
cross entropy as the loss function

L =

N−1∑
l=0

yl log (sl) + (1− yl) log (1− sl) , (6)

where yl is the ground truth of label l for the training image.
All four modules can be end-to-end trained by back propaga-
tion algorithm.

3. EXPERIMENTS

For the proposed DCN-GNN framework, ResNet-101 [8] is
used as the feature extraction backbone, and deformable con-
volutions are applied in all 3 × 3 conv layers in last three
stages. In semantic decoupling module, ds, d1 and d2 are set

to 300, 1024, 1024. In the semantic interaction module, the
dimension of the hidden state is 2048 and the number of steps
of GGNN T = 3. During training, we use SGD as the op-
timizer with momentums of 0.9 and weight decay of 10−4.
The learning rate is initialized as 0.001 and divided by 10 for
every 30 epochs. Totally we train the model for 100 epochs.

Two data sets, i.e., UC-Merced [9] and DOTA [10], are
used for experiments. UC-Merced contains 2100 images of
the size 256 × 256, and these images are categorized into 17
classes. DOTA consists of 2806 images of the size of about
4000 × 4000, and these images are annotated with 15 class-
es. For UC-Merced, each input image is resized to 512× 512
and random cropped into 448 × 448. For DOTA, each in-
put image is resized to 864 × 864 and random cropped into
800 × 800. We adopt the mean average precision (mAP),
and overall precision, recall, F1-measure (OP, OR, OF1) and
per-class precision, recall, F1-measure (CP, CR, CF1) for per-
formance evaluation.

The quantitative results are respectively presented in Ta-
ble 1 and Table 2 for two datasets. Six methods are compared:
1) ResNet50 [8]; 2) ResNet101 [8]; 3) ML-GCN [2]; 4) SS-
GRL [3]; 5) ResNet-DC that is ResNet101 with deformable
convolutions; 6) our DCN-GNN. As is shown in tables, the
proposed DCN-GNN outperforms other methods on two data
sets in most cases. During the inference stage, our model run-
s at 116 fps for UC-Merced, and 44 fps for DOTA on Nvidia
Geforce GTX 1080ti.

We further visualize the effects of deformable convolu-
tions and attention mechanisms in our model respectively.
Fig. 2 shows the sample locations (red points) in last three
stacked deformable convolutions corresponding to the activa-
tion units (green points) on the top feature. It demonstrates
that deformable convolutions can obtain adaptive receptive
field for different scales and shapes of land-cover targets.
Fig. 3 shows the attention weights of different labels for two
remote sensing images. For example, Fig. 3(b) and Fig. 3(c)
are the generated attention maps for tennis court and large
vehicle. Similarly, Fig. 3(e) and Fig. 3(f) are attention maps
that associated with small vehicle and plane respectively.

4. CONCLUSION

In this paper, we propose a multi-label remote sensing image
classification framework based on deformable convolutions
and GNNs, in which deformable convolutions are introduced
to model various geometric transformations and GNNs are
adopted to capture contextual semantic features. Experimen-
tal results on UC-Merced and DOTA demonstrate the effec-
tiveness of the proposed method.
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