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Abstract

Hierarchical multi-granularity classification (HMC) as-
signs hierarchical multi-granularity labels to each object
and focuses on encoding the label hierarchy, e.g., [“Al-
batross”, “Laysan Albatross”] from coarse-to-fine levels.
However, the definition of what is fine-grained is subjec-
tive, and the image quality may affect the identification.
Thus, samples could be observed at any level of the hier-
archy, e.g., [“Albatross”] or [“Albatross”, “Laysan Alba-
tross”], and examples discerned at coarse categories are
often neglected in the conventional setting of HMC. In this
paper, we study the HMC problem in which objects are la-
beled at any level of the hierarchy. The essential designs of
the proposed method are derived from two motivations: (1)
learning with objects labeled at various levels should trans-
fer hierarchical knowledge between levels; (2) lower-level
classes should inherit attributes related to upper-level su-
perclasses. The proposed combinatorial loss maximizes the
marginal probability of the observed ground truth label by
aggregating information from related labels defined in the
tree hierarchy. If the observed label is at the leaf level, the
combinatorial loss further imposes the multi-class cross-
entropy loss to increase the weight of fine-grained classi-
fication loss. Considering the hierarchical feature interac-
tion, we propose a hierarchical residual network (HRN), in
which granularity-specific features from parent levels act-
ing as residual connections are added to features of chil-
dren levels. Experiments on three commonly used datasets
demonstrate the effectiveness of our approach compared
to the state-of-the-art HMC approaches. The code will be
available at https://github.com/MonsterZhZh/HRN.

1. Introduction
Traditional single-granularity classification usually as-

signs a single label to a given object from a set of mu-
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(a) Differences in domain knowledge and interference from the image
occlusion.

(b) Large variations of image resolutions.

Figure 1. Different objects can be discerned at various levels in the
label hierarchy due to differences in domain knowledge or image
quality such as occlusion or resolution.

tually exclusive class labels. For instance, FGVC aims at
distinguishing objects from different subordinate-level cat-
egories within a given object category, e.g., subcategories of
birds [31], cars [16], aircraft [20]. However, the definition
of what is fine-grained is subjective, and the image quality
may affect the identification, as illustrated in Fig. 1. A bird
can be discerned as Albatross or Laysan Albatross due to
differences in domain knowledge. Moreover, a bird expert
recognizes a bird as Albatross rather than Black-footed Al-
batross because of the occlusion of key parts. Airborne or
satellite image resolutions often have large variations, caus-
ing objects to be recognized at different levels. These chal-
lenges increase the difficulty of constructing a dataset for
single-granularity classification, while images annotated as
coarse categories are also overlooked.

Compared to single-granularity classification, a more
preferable solution is to employ hierarchical multi-
granularity labels to describe an object, which provides
more flexible options for annotators with different knowl-
edge backgrounds [4]. HMC [28] aims to exploit hierarchi-
cal multi-granularity labels and embeds the label hierarchy
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in loss function or network architecture. Whereas conven-
tional HMC usually evaluates each sample with complete
hierarchical labels from the coarsest to the finest granular-
ity. A more robust HMC model should effectively utilize
examples observed at various levels in the hierarchy, e.g.,
making use of bird images annotated as [“Albatross”] and
[“Albatross”, “Laysan Albatross”].

In this paper, we study the HMC problem in which sam-
ples are labeled at any level of the hierarchy. We factor-
ize this problem into two aspects: (1) how to effectively
use instances labeled at different levels; (2) how to perform
hierarchical feature interaction in the network architecture.
For the first problem, we adopt a tree hierarchy that defines
two kinds of semantic relationships between labels: parent-
child correlations between levels and mutual exclusion at
the same level. Inspired by the work of [7], if an instance
is discerned at a label in the hierarchy, we maximize its
marginal probability in the probability space constrained by
the tree hierarchy. Such marginalization enjoys two bene-
fits: learning with the coarse-level label could impact de-
cisions of fine-grained subclasses while learning with the
fine-level label aids the prediction of coarse-grained super-
classes. Moreover, if the ground truth label is observed
at the leaf level, we further impose the multi-class cross-
entropy loss to enhance the discriminative power among
fine-grained categories.

Another critical issue is to design appropriate hierarchi-
cal feature interaction that reflects the label hierarchy. A
distinct characteristic of hierarchical categories is that from
coarse-to-fine levels, fine-level classes not only have unique
attributes but also inherit attributes related to coarse-level
superclasses. Based on this property, we propose a hierar-
chical residual network (HRN) illustrated in Fig. 2. We first
set up granularity-specific layers to disentangle hierarchi-
cal features from the trunk network. Then, these hierarchi-
cal features interact via residual connections [12–14,29,34],
i.e., features from parent levels acting as skip connections
are added to features of children levels. In summary, we aim
to tackle two challenges in HMC: (1) exploiting samples la-
beled at different levels; (2) designing the suitable experi-
mental setting for this scenario. Accordingly, we propose
a hierarchical loss on HRN and introduce class relabeling,
image degeneration, and two evaluation metrics [30] in the
experimental setting. Experiments on three commonly used
FGVC datasets demonstrate the advantages of our approach
compared to the state-of-the-art HMC approaches.

2. Related Work

2.1. Hierarchical Multi-Granularity Classification

HMC problems naturally arise in many domains, such as
text categorization [17, 22, 25] and functional genomics [1,
26, 30]. In text categorization, an increasing number of

works [5, 15, 21, 23] leveraged the label hierarchy to im-
prove accuracy. In image classification, HMC systems have
been used to annotate medical images [8] and classify di-
atom images [9]. Based on deep neural networks (DNNs),
the studies usually go along two paths: mapping the label
hierarchy to network architectures [2,3,24,33] or loss func-
tions that impose the hierarchical constraints [7, 11]. HMC
with local multi-layer perceptrons (HMC-LMLP) [3] pro-
posed to train a chain of MLP networks, each corresponding
to a hierarchical level. The input of each MLP uses the out-
put provided by the previously trained MLP to augment the
feature vector of the instance. This supervised incremental
greedy procedure continues until the last level of the hier-
archy is reached. HMC network (HMCN) [33] comprised
multiple local outputs, with one local output layer per hi-
erarchical level of the class hierarchy plus a global output
layer that captures the cumulative relationships forwarded
across the entire network. All local outputs are then con-
catenated and pooled with the global output to generate a
final consensual prediction. HMC-LMLP and HMCN em-
bed label hierarchy in their network architecture. Their loss
functions sum over binary cross-entropy losses from each
hierarchical level, which assumes each label is independent
of each other, causing the implicit hierarchical relations be-
tween two semantic labels to be ignored.

Another line of HMC works encodes the label hierarchy
in loss functions by imposing the hierarchical constraints.
Coherent HMC neural network (C-HMCNN) [11] revised
the binary cross-entropy loss to satisfy the parent-child con-
straint. The revision ensures that no hierarchy violation
happens, i.e., for any threshold, when C-HMCNN predicts
a sample belonging to a class, this sample also belongs to
its parent classes. Moreover, C-HMCNN can teach the net-
work how to better make the prediction on the higher level
classes using the prediction results on the lower level ones.
While C-HMCNN only restricts the parent-child correla-
tion, other kinds of semantic relations between hierarchical
labels can be constructed using graphs. Deng et al. [7] for-
malized semantic connections between any two labels into
a directed acyclic graph (DAG). They built a modified junc-
tion tree algorithm that contains multiple loops during mes-
sage passing on the junction tree to compute the probabilis-
tic classification loss defined on the DAG.

2.2. Fine-Grained Visual Classification

Since FGVC inherently forms a hierarchy with differ-
ent levels of concept abstraction, many approaches [4, 6,
27, 35, 37] proposed to exploit the hierarchical label struc-
ture of FGVC. Zhang et al. [35] generalized the triplet loss
by describing inequalities of the distance between images
belonging to the same fine-grained class, different fine-
grained classes but the same coarse class, and different
coarse classes. Shi et al. [27] proposed a generalized large-
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Figure 2. The network architecture consists of a trunk network, hierarchical feature interaction module, and two parallel output channels:
OHier and OCE forming the probabilistic classification loss (LHier) and the cross-entropy loss (LCE), respectively. We illustrate the
network architecture on CUB-200-2011 dataset that contains three hierarchical levels. Granularity-specific block for each hierarchical
level process feature maps generated from the trunk network, then these hierarchical features interact via residual connections, i.e., features
from parent levels acting as skip connections are added to features of children levels. OHier organizes sigmoid outputs from three levels
using the tree hierarchy, and OCE generates softmax outputs corresponding to the fine-grained leaf categories.

margin loss that not only reduces between-class similarity
and within-class variance of the learned features but also
makes the subclasses belonging to the same coarse class be
more similar than those belonging to different coarse classes
in the feature space. Chen et al. [6] developed a novel hi-
erarchical semantic embedding framework that incorporates
the predicted score vector of the higher level as prior knowl-
edge to learn finer-grained feature representation at each hi-
erarchical level. Chang et al. [4] leveraged level-specific
classification heads to disentangle coarse-level features with
fine-grained ones and allowed fine-grained features to par-
ticipate in coarser-grained label predictions but constraining
the gradient flow to only update the parameters within each
classification head. These approaches refine the feature rep-
resentation related to hierarchical levels in the feature space.
They developed the loss function based on the multi-class
cross-entropy loss that implies the mutual exclusion among
classes at the same hierarchical level. However, they neglect
to encode other label relations like the parent-child correla-
tion to transfer hierarchical knowledge between levels using
samples observed at different levels.

2.3. Hierarchical Network Architecture

The proposed HRN is a feature learning model for class
hierarchy, consisting of shared-specific feature representa-
tion and residual connection-based feature transfer. The
shared-specific feature representation is commonly adopted
in multi-task learning including tree-structured tasks as in
our paper and [10, 18, 32, 36], where tree hierarchy is con-
structed by the semantics and the feature similarity, respec-
tively. However, it is insufficient to integrate the knowledge
from tree hierarchy, thus feature transfer between levels is
an effective reinforcement. Wang et al. [32] use a linear

combination of losses to fuse the features from different lev-
els, while Li et al. [18] concatenate class predictions from
lower levels to generate a new class prediction at the current
level. Fan et al. [10] and Zhao et al. [36] define correlations
among levels in the tree classifier rather than with a clear
feature transfer module. Our method introduces a new so-
lution to use the residual connection to transfer upper-level
features to the current-level feature. The residual connec-
tion forces the network to learn residual features from iden-
tity mapping, which helps the HRN learn different features
of upper levels compensated for lower levels.

3. Proposed Methods
3.1. Network Architecture

Our network architecture includes a trunk network, a hi-
erarchical feature interaction module, and two parallel out-
put channels, see Fig. 2. The trunk network is used to
extract features from the input images, and any common
network is applicable. Here, we adopt the ResNet-50 as
the trunk network since it is widely used for feature extrac-
tion. The hierarchical feature interaction module contains
granularity-specific blocks and residual connections. These
blocks share the same structure that comprises two convo-
lutional layers and two fully connected (FC) layers. Each
block is designed to extract the specialized feature for one
hierarchical level. The residual connections first linearly
combine features of fine-level subclasses with features of
coarse-level superclasses. Accordingly, subclasses not only
have unique attributes but also inherit the attributes from
their superclasses. Then, non-linear transformation (ReLU)
is applied to combined features.

We set up two output channels in our model. The first
output channel is utilized to compute the probabilistic clas-
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sification loss based on the tree hierarchy, in which each
sigmoid node corresponds to a distinct label in the hierar-
chy. We perform the non-linear projection by sigmoid in-
stead of softmax because sigmoid reflects the independent
relations, whereas softmax implies mutual exclusion. The
sigmoid nodes from each hierarchical level are then orga-
nized with the tree hierarchy to comply with the hierarchical
constraints. The second output channel computes the multi-
class cross-entropy loss imposed on the leaf level so that the
mutually exclusive fine-grained classes gain more attention
during training. For simplicity, we denote the first and the
second output channel as OHier and OCE , respectively.

3.2. Loss Function

The proposed combinatorial loss integrates two forms of
losses: the probabilistic classification loss and the multi-
class cross-entropy loss. We first formalize the tree hierar-
chy to encode semantic relations between hierarchical la-
bels. The probabilistic classification loss defined on the tree
hierarchy aims to transfer hierarchical knowledge during
training. We empirically find that if the training samples la-
beled at the leaf level are few, the probabilistic classification
loss fails to well separate the fine-grained leaf classes. One
simple but feasible solution is to increase the weight of fine-
grained classification loss. Therefore, we further impose the
multi-class cross-entropy loss on the leaf categories, which
obeys the mutually exclusive constraint among fine-grained
classes defined in the tree hierarchy.

3.2.1 The Formalism of Tree Hierarchy

The tree hierarchy G = (V,Eh, Ee) consists of a set of
nodes V = {v1, . . . , vn}, directed edges Eh ⊆ V × V ,
and undirected edges Ee ⊆ V × V . Each node v ∈ V
corresponds to a distinct class label. The number of nodes
n equals the number of all labels in the hierarchy. A di-
rected edge (vi, vj) ∈ Eh is a subsumption edge, indicating
that class i subsumes label j, e.g., Albatross is a parent or
superclass of Black-footed Albatross. An undirected edge
(vi, vj) ∈ Ee is an exclusion edge, denoting that classes
vi and vj are mutually exclusive, e.g., a bird cannot be
the Black-footed Albatross and Laysan Albatross simulta-
neously. Any two nodes share a subsumption edge or an
exclusion edge.

Each class label takes binary values, i.e., vi ∈ {0, 1},
representing whether an object belongs to this class or not.
Each edge then defines a constraint on the binary values that
two labels of its incident nodes can take. An assignment of
(vi, vj) = (0, 1) (e.g. a Black-footed Albatross but not a
Albatross) for a subsumption edge (vi, vj) ∈ Eh is illegal,
while (vi, vj) = (1, 1) (it is both Black-footed Albatross
and Laysan Albatross) is also an illegal assignment for an
exclusion edge (vi, vj) ∈ Ee. Defined by these local con-

straints of individual edges, a legal global assignment of all
labels in the hierarchy is a binary label vector y ∈ {0, 1}n
for an object. The set of all legal global assignments forms
the state space SG ⊆ {0, 1}n of tree G. We can infer SG

to be a matrix S ∈ R(n+1)×n, where each row represents
a legal binary label vector y. We traverse all legal assign-
ments by assigning each label a value of 1, along with an
assignment that is all zeros.

3.2.2 Probabilistic Classification Loss

We calculate the probabilistic classification loss from
OHier, and each sigmoid node in OHier corresponds to a
class label in the tree hierarchy. Suppose the number of sig-
moid nodes is n, and y ∈ {0, 1}n is the binary label vector
representing an assignment of all labels. Given an input im-
age x, the joint probability of all sigmoid nodes concerning
the assignment y can be computed as:

P̃ (y|x) =
n∏

i=1

ϕi(x̄i, yi)
∏

i,j∈{1,...,n}

ψi,j(yi, yj) (1)

where x̄i is the sigmoid output of the i-th label node,
P̃ (y|x) is the unnormalized probability, and ϕi(x̄i, yi) =
ex̄i[yi=1]. ψi,j(yi, yj) is the constraint defined in the tree
hierarchy between any two labels in y:

ψi,j(yi, yj) =

{
0, if violates constraints
1, otherwise

(2)

The joint probability is then normalized by Pr(y|x) =
P̃ (y|x)
Z(x) , where Z(x) is the partition function that sums over

all legal assignments ȳ ∈ SG in the state space of tree G:

Z(x) =
∑

ȳ∈{0,1}n

n∏
i=1

ϕi(x̄i, ȳi)
∏

i,j∈{1,...,n}

ψi,j(ȳi, ȳj)

(3)
If input image x is observed at the i-th label in the tree

hierarchy, i.e., yi = 1, we can obtain the marginal proba-
bility Pr(yi = 1|x) of label i by summing over all legal
assignments ȳ ∈ SG that include ȳi = 1:

Pr(yi = 1|x) = 1

Z(x)

∑
ȳ:ȳi=1

∏
i

ϕi(x̄i, ȳi)
∏
i,j

ψi,j(ȳi, ȳj)

(4)
The marginal probability of a leaf label in tree G relies on
the sum of its ancestors’ scores because all its ancestors
must be 1 if the label of this leaf node takes value 1, which
enables the parents’ scores to impact the descendants’ de-
cisions. On the other hand, the marginal probability of a
parent label is marginalized over all possible states of its
descendants, i.e., aggregating the information from all its
subclasses.
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We propose to compute marginalization via matrix mul-
tiplication. Suppose the network outputs X ∈ Rn×k from
OHier, where n is the number of sigmoid nodes, and k
stands for batch size. Each column in X is the output vector
corresponding to a sample in the batch. The unnormalized
joint probability can be computed as J = exp(SX), and
the partition function z can be calculated by summing each
column of J. To obtain the marginal probability of the j-th
sample labeled at i, we first search for eligible rows in the
i-th column of S that qualify S[:, i] > 0, then we sum the
corresponding elements in the j-th column of J, finally, we
normalize the summation by dividing the j-th element in z.

In the training process, the observed label can be at
any level of the hierarchy, and we maximize the marginal
likelihood of the observed ground truth label. Given m
training samples D = {x(l),y(l), g(l)}, l = 1, . . . ,m,
where y(l) is the complete ground truth label vector and
g(l) ∈ {1, . . . , n} is the index of the observed label, the
probabilistic classification loss is defined as:

LHier(D) = − 1

m

m∑
l

ln(Pr(y
(l)

g(l) = 1|x(l))) (5)

3.2.3 Combinatorial Loss

The multi-class cross-entropy loss is commonly used in
FGVC to separate fine-grained categories. We add LCE

to our model to further increase the discriminative power
for fine-grained leaf classes. LCE employs softmax out-
puts from OCE , in which each node corresponds to a
fine-grained leaf label in the tree hierarchy. Softmax out-
puts imply mutually exclusive relations among fine-grained
classes, which is consistent with the hierarchy constraint de-
fined in the tree hierarchy. We combine LCE with LHier as
follows:

Lcom(x(l), y
(l)

g(l)) =


LCE + LHier, if g(l) is in

leaf nodes
LHier, otherwise

(6)

Depending on whether x(l) is labeled at fine-grained leaf
categories, the combined loss decides whether it needs to
incorporate LCE or not. Finally, the total loss on D is:

Ltotal(D) =
∑
l

Lcom(x(l), y
(l)

g(l)) (7)

4. Experiments
4.1. Implementaion Details

In all our experiments, we resize input images to 448 ×
448 and train every single experiment for 200 epochs.
Random horizontal flipping and random cropping (random
cropping for training and center cropping for testing) are

applied for data augmentation. We adopt ResNet-50 pre-
trained on ImageNet as our trunk network and use stochas-
tic gradient descent (SGD) with a momentum of 0.9, weight
decay of 0.0005 to optimize our model. The batch size is set
to 8. Meanwhile, the learning rates of the convolution layers
and the FC layers newly added for hierarchical interaction
are initialized as 0.002 and adjusted by the cosine anneal-
ing strategy [19]. The learning rates of the trunk layers are
maintained as 1/10 of the newly added layers.

4.2. Datasets and Experimental Designs

We evaluate our proposed method on three widely used
FGVC datasets, i.e., CUB-200-2011 [31], Aircraft [20], and
Stanford Cars [16]. However, CUB-200-2011 and Stanford
Cars only provide one fine-grained label for each image.
To construct a taxonomy of label hierarchy for these two
datasets, we learn from the work of Chang et al. [4], in
which they trace parent nodes in Wikipedia pages. CUB-
200-2011 covers 200 bird species grouped into a three-level
label hierarchy with 13 orders, 38 families, and 200 species
from the top layer to the bottom layer. Aircraft consists
of a three-level label hierarchy with 30 makers, 70 families,
and 100 plane models from the top layer to the bottom layer.
Stanford Cars contains 196 car models that are re-organized
into a two-level label hierarchy by adding 9 superordinate
car types. We do not use any bounding box/part annotations
in all our experiments and follow the official train/test splits
for evaluation, i.e., 5994/5794 images for CUB-200-2011,
6667/3333 images for Aircraft, and 8144/8041 images for
Stanford Cars.

Besides assigning hierarchical multi-granularity labels
for each image, experimental designs simulate the afore-
mentioned situation where samples are observed at differ-
ent levels of the hierarchy. To imitate the lack of domain
knowledge, we select 0%, 30%, 50%, 70%, and 90% sam-
ples from each fine-grained class and relabel their last-level
fine-grained classes to immediate parent classes in the train-
ing set, respectively. Considering the impact of image qual-
ity, we conduct another experiment by reducing the image
resolution of selected samples using the nearest-neighbor
interpolation with a factor of 4 after relabeling. The ex-
treme case 0% represents the conventional setting of HMC
or fine-grained classification that exploits the label hierar-
chy. Other cases indicate that part of samples are observed
at internal levels of the tree hierarchy, and the rest owns the
complete label hierarchy from the highest level to the low-
est fine-grained level. All images in the test set are tested
with the complete label hierarchy.

4.3. Evaluation Metrics
To reasonably evaluate the performance of HMC on

FGVC datasets, we employ two evaluation metrics. The
first metric follows the convention of FGVC and uses the
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overall accuracy (OA). The output of HMC models is a
probability vector for each class. Concerning the hierar-
chical label structure, we take the maximum value of the
output probability vector corresponding to each hierarchi-
cal level as the predicted label and compute OA on the test
set. The second criterion commonly used in HMC litera-
ture [11, 30, 33] measures the area under the average preci-
sion and recall curve AU(PRC). Instead of calculating the
precision and recall curve (PRC) for each class, AU(PRC)
computes an average PRC to evaluate the output probabil-
ity vector of all classes in the hierarchy. Specifically, for a
given threshold value, one point (Prec,Rec) in the average
PRC is computed as:

Prec =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi

Rec =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi

(8)

where i ranges over all classes, and TPi, FPi, and FNi are
the numbers of true positives, false positives, and false neg-
atives for class label i, respectively. By varying the thresh-
old, an average PRC is obtained andAU(PRC) denotes the
area under this curve. AU(PRC) also has the advantage of
being independent of the threshold used to predict when a
sample belongs to a particular class (which is often heavily
application-dependent).

4.4. Ablation Study

In this section, we conduct ablation studies to investigate
two key designs of the proposed method on CUB-200-2011:
HRN and combinatorial loss.

4.4.1 Significance of HRN

As displayed in Fig. 2, we analyze three components of
HRN: granularity-specific block (GSB), the linear combina-
tion of hierarchical features (LC), and non-linear transfor-
mation of combined features (ReLU). We report OA on the
species level with the relabeling proportion of 0% in Tab. 1.
The model that only contains ResNet-50 and combinatorial
loss obtained a result of 84.32. As more components of
HRN are integrated into the model, we gradually achieve
better results.

4.4.2 Contribution of Combinatorial Loss

In this subsection, we validate the effectiveness of com-
bining the probabilistic classification loss (LHier) with the
multi-class cross-entropy loss (LCE). Tab. 2 records OA on
the species level with five relabeling proportions. In Tab. 2,
it can be found that when more training samples are rela-
beled to coarse-grained classes, the fine-grained classifica-
tion performance of LHier degenerates drastically. In con-
trast, the combinatorial loss consistently outperforms LHier

by adding LCE imposed on fine-grained leaf classes.

Table 1. OA on the species level with the relabeling proportion
of 0% by gradually adding each component in HRN: granularity-
specific block (GSB), the linear combination of hierarchical fea-
tures (LC), and non-linear transformation of combined features
(ReLU).

Component OA

Combinatorial Loss 84.32
Combinatorial Loss + GSB 85.77
Combinatorial Loss + GSB + LC 86.17
Combinatorial Loss + GSB + LC + ReLU 86.60

Table 2. OA on the species level by analyzing the effectiveness
of combining the probabilistic classification loss (LHier) with the
multi-class cross-entropy loss (LCE).

Relabeling 0% 30% 50% 70% 90%

LHier 84.56 76.66 64.36 45.10 28.69
LHier + LCE 86.60 83.91 80.52 73.96 53.02

4.5. Comparison with State-of-the-art Methods

To fairly evaluate the proposed method, we compare
it to state-of-the-art HMC methods: HMC-LMLP [3],
HMCN [33], and C-HMCNN [11], and the state-of-the-art
FGVC approach that exploits the label hierarchy: Chang
et al. [4]. In our hierarchical settings, we train all meth-
ods with different relabeling proportions. Chang et al. [4]
sum the multi-class cross-entropy loss from each hierarchi-
cal level. When adapting their approach to hierarchical set-
tings, we neglect the last-level loss if a sample has been re-
labeled to its parent class. We report OA of each hierarchi-
cal level and AU(PRC) results on test sets of three FGVC
datasets: CUB-200-2011, Aircraft, and Stanford Cars, dis-
played in Tab. 3, Tab. 4, and Tab. 5, respectively.

From Tab. 3, Tab. 4, and Tab. 5, we can observe that the
proposed method achieves the best OA results of each hier-
archical level and the bestAU(PRC) results in most cases.
In other cases, our results are also comparable to the best re-
sults. Chang et al. [4] use level-specific classification heads
to disentangle coarse-level features with fine-grained ones,
but they only consider mutually exclusion in each hierar-
chical level without examining subsumption relations be-
tween hierarchical levels in their loss function. C-HMCNN
only constrains subsumption relations. HMC-LMLP and
HMCN embed label hierarchy in their network architecture
and train with the binary cross-entropy loss that implies all
classes are independent. By contrast, in our framework,
the tree hierarchy specifies the relation between any two la-
bels with mutually exclusion or subsumption, and the cor-
responding probabilistic loss combined with the multi-class
cross-entropy loss can transfer hierarchical knowledge dur-
ing training. The proposed HRN disentangles hierarchical
features by granularity-specific blocks, and these features
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Table 3. OA(%)/AU(PRC) results on CUB-200-2011 by comparing to state-of-the-art methods.

Relabeling Hierarchy HMC-LMLP [3] HMCN [33] C-HMCNN [11] Chang et al. [4] Ours

0%
Order 98.45

0.945
97.29

0.934
98.48

0.960
97.76

0.968
98.67

0.969Family 94.24 93.15 94.63 94.17 95.51
Specie 79.60 79.75 81.58 85.56 86.60

30%
Order 98.17

0.920
96.82

0.905
97.98

0.938
97.81

0.962
98.31

0.958Family 93.58 91.99 93.89 94.10 94.79
Specie 71.30 71.68 74.91 82.53 83.91

50%
Order 98.36

0.895
96.70

0.874
98.34

0.909
97.43

0.951
97.89

0.944Family 93.84 90.85 94.10 93.47 94.29
Specie 64.34 64.29 67.52 79.30 80.52

70%
Order 98.27

0.831
97.22

0.834
98.02

0.844
96.65

0.924
98.43

0.936Family 93.84 91.25 93.91 91.74 93.94
Specie 47.98 52.90 50.05 70.03 73.96

90%
Order 98.38

0.716
97.31

0.725
98.27

0.772
97.12

0.868
97.97

0.865Family 94.44 86.85 94.37 91.91 93.32
Specie 22.89 30.69 26.16 49.36 53.02

Table 4. OA(%)/AU(PRC) results on Aircraft by comparing to state-of-the-art methods.

Relabeling Hierarchy HMC-LMLP [3] HMCN [33] C-HMCNN [11] Chang et al. [4] Ours

0%
Maker 97.09

0.968
96.07

0.959
97.45

0.979
96.88

0.981
97.45

0.976Family 94.39 92.56 95.41 95.28 95.79
Model 90.25 87.19 91.69 91.92 92.58

30%
Maker 96.85

0.950
96.13

0.952
96.76

0.971
87.41

0.957
97.27

0.970Family 93.34 92.74 94.27 94.44 95.52
Model 85.42 85.42 88.39 89.33 91.62

50%
Maker 97.24

0.925
95.71

0.935
96.49

0.963
73.56

0.909
97.27

0.965Family 93.82 92.05 93.88 94.17 95.67
Model 83.59 81.52 85.18 86.66 89.66

70%
Maker 96.97

0.898
95.80

0.900
96.67

0.953
58.77

0.816
96.75

0.953Family 93.70 90.49 94.00 93.78 94.20
Model 81.61 78.37 80.11 82.96 84.53

90%
Maker 96.97

0.870
93.40

0.824
96.76

0.903
49.88

0.656
95.43

0.904Family 93.37 89.50 94.36 93.72 91.68
Model 74.41 70.06 71.02 64.99 71.06

interact via residual connections to fuse attributes following
the hierarchy.

4.6. Generate Relabeled Images by Reducing Image
Resolution

Except for domain knowledge, samples captured at low-
resolution can hardly be identified with the last-level fine-
grained categories, and thus they are more likely to be in-
ferred as upper-level coarse classes. Considering the practi-
cal limitation of image quality, we reduce the image resolu-
tion of selected samples corresponding to different relabel-
ing proportions. Tab. 6 displays the experimental results,
and our method consistently outperforms compared meth-
ods in most cases under two evaluation metrics.

Moreover, for each method, we average its OA and
AU(PRC) results on all levels, relabeling proportions, and
datasets in Tabs. 3 to 6 and summarize the averaged results
in Tab. 7, which shows significant improvement over the
compared state-of-the-art methods.

4.7. Evaluation on Traditional FGVC Setting

Considering hierarchical knowledge, FGVC approaches
refine the feature representation related to hierarchical lev-
els in the feature space [4, 6, 27, 35], e.g., measuring the
distance between classes in the hierarchy [27, 35], learn-
ing finer-grained features with the prediction of higher
level [6], or disentangling coarse-level features with fine-
grained ones [4]. Nevertheless, they develop their loss func-
tions based on the multi-class cross-entropy loss, which im-
plies mutual exclusion at the same hierarchical level. On
the other hand, encoding label relations like the parent-child
correlation helps to utilize samples observed at different
levels. In contrast, the proposed method specifies label re-
lations with the tree hierarchy and computes the combina-
torial loss to effectively exploit samples labeled at different
levels.

We record the best results reported in their works
in which each sample has complete hierarchical multi-
granularity labels. However, some papers did not present
results on all our datasets, resulting in the missing val-
ues. In Tab. 8, Chang et al. [4] achieve state-of-the-art
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Table 5. OA(%)/AU(PRC) results on Stanford Cars by comparing to state-of-the-art methods.

Relabeling Hierarchy HMC-LMLP [3] HMCN [33] C-HMCNN [11] Chang et al. [4] Ours

0% Type 96.98
0.953

95.21
0.938

96.75
0.971

96.40
0.977

97.41
0.981Maker 87.65 88.71 90.64 93.65 94.03

30% Type 96.85
0.909

94.38
0.887

96.23
0.927

96.23
0.970

96.13
0.969Maker 79.16 81.59 81.92 91.61 90.55

50% Type 96.92
0.842

93.46
0.832

95.95
0.850

95.60
0.960

95.88
0.963Maker 66.45 73.03 70.22 88.10 88.72

70% Type 96.89
0.705

93.02
0.713

95.67
0.708

92.90
0.905

96.06
0.947Maker 41.52 52.66 43.17 76.13 83.72

90% Type 96.38
0.572

93.42
0.560

96.49
0.577

92.25
0.761

94.32
0.794Maker 13.51 19.89 13.54 45.79 49.30

Table 6. Compared OA(%)/AU(PRC) results on CUB-200-2011 by reducing the image resolution after relabeling.

Relabeling Hierarchy HMC-LMLP [3] HMCN [33] C-HMCNN [11] Chang et al. [4] Ours

0%
Order 98.45

0.945
97.29

0.934
98.48

0.960
97.76

0.968
98.67

0.969Family 94.24 93.15 94.63 94.17 95.51
Specie 79.60 79.75 81.58 85.56 86.60

30%
Order 97.86

0.926
96.32

0.887
97.81

0.944
97.62

0.961
98.50

0.959Family 93.18 88.06 93.48 93.59 94.75
Specie 74.32 70.78 76.04 82.33 84.13

50%
Order 97.45

0.907
95.32

0.853
97.62

0.925
97.12

0.947
98.20

0.952Family 92.25 85.93 92.51 91.79 93.82
Specie 68.10 62.70 70.37 78.30 81.18

70%
Order 97.62

0.862
94.43

0.789
97.20

0.881
96.32

0.909
97.58

0.926Family 91.72 82.64 91.18 88.84 92.42
Specie 53.11 45.75 55.14 68.06 73.98

90%
Order 96.67

0.695
93.56

0.694
96.79

0.801
96.06

0.843
96.15

0.837Family 89.96 78.60 89.44 87.52 88.29
Specie 20.78 22.52 28.32 46.58 50.10

Table 7. The average OA(%) and AU(PRC) results on all levels,
relabeling proportions, and datasets in Tabs. 3 to 6.

Metrics HMC-LMLP HMCN C-HMCNN Chang et al. Ours
OA 83.66 82.34 84.44 86.29 89.78

AU(PRC) 0.861 0.846 0.887 0.910 0.937

Table 8. OA(%) results on the traditional FGVC setting with single
leaf label.

Method CUB-200-2011 Aircraft Stanford Cars

Zhang et al. [35] — — 88.4
Shi et al. [27] 77.0 84.6 89.5
Chen et al. [6] 88.1 — —
Chang et al. [4] 89.9 93.6 95.1

Ours 88.6 94.1 95.1

performances in the traditional single-label FGVC problem.
Our approach reaches comparable results by simply replac-
ing ResNet-50 with ResNeXt101-32×4d [34]. Other tech-
niques that enrich the feature representation in the context
of FGVC can be applied to boost the performance, which is
beyond our scope.

5. Conclusion

We study the HMC problem in which different objects
can be discerned at various levels in the label hierarchy
due to the differences in domain knowledge or image qual-
ity. To address this problem, we propose combinatorial loss
and HRN. The combinatorial loss combines the probabilis-
tic classification loss defined on the tree hierarchy that en-
codes semantic relations between any two hierarchical la-
bels with the multi-class entropy loss imposed on the fine-
grained leaf categories. The probabilistic classification loss
can transfer hierarchical knowledge across levels, and the
multi-class entropy loss increases the discriminative power
on the leaf classes. HRN manages to perform hierarchi-
cal feature interaction via residual connections, i.e., features
from parent levels acting as skip connections are added to
features of children levels. Comprehensive experiments on
three commonly used datasets demonstrated the effective-
ness of the proposed method compared to state-of-the-art
HMC and FGVC methods.
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