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ABSTRACT

High-dimensional spectral feature and limited training sam-
ples have caused a range of difficulties for hyperspectral im-
age (HSI) classification. Feature extraction is effective to
tackle this problem. Specifically, tensor factorization is supe-
rior to some prominent methods such as principle component
analysis (PCA) and non-negative matrix factorization (NMF)
because it takes spatial information into consideration. Re-
cently, deep learning has gotten more and more attention for
efficiently extracting hierarchical features for various tasks.
In this paper, we propose a novel feature extraction method,
deep tensor factorization (DTF), to extract hierarchical and
meaningful features from observed HSI. This method takes
advantage of tensor in representing HSI and the merits of
convolutional neural network (CNN) in hierarchical feature
extraction. Specifically, a convolution operation is firstly ap-
plied in the spectral dimension of HSI to suppress the effect
of noise. Then, the convolved HSI is fed into tensor factoriza-
tion to learn a low rank representation of data. After that, the
above two process are repeated to learn a hierarchical repre-
sentation of HSI. Experimental results on two real hyperspec-
tral data sets show the superiority of the proposed method.

Index Terms— Hyperspectral image (HSI) classification,
feature extraction, tensor decomposition, convolutional neu-
ral network (CNN)

1. INTRODUCTION

Hyperspectral classification is non-trivial due to the high vari-
ations of spectral signature of identical material and the dis-
equilibrium between small size of labeled samples and high-
dimensionality of data. This high-dimensionality results from
hundreds of contiguous bands acquired by hyperspectral re-
mote sensors, which are redundant, and it can easily cause
the so-called curse of dimensionality (Hughes phenomenon).
Furthermore, even for pixels in homogeneous region within
an image, their spectral signatures may be different due to var-
ied imaging conditions in imaging areas. Such within-class
variation may blur the discrimination among different types
of ground objects. Thus, there is a need to find an efficient
feature extraction method to tackle these problems.

Low-rank representation is effective in feature extraction.
Among which, principle component analysis (PCA) [1] and
non-negative matrix factorization (NMF) [2] based methods
are most common. PCA aims to find a set of orthonormal
bases that contain the most variances of original data. NMF
factorizes a matrix into the product of two non-negative ma-
trix to learn a part-based representation of data. However,
such techniques need to unfold the 3D HSI into 2D matrix
form, unavoidably losing spatial information contained in an
HSI. Alternatively, a third-order tensor is more natural in rep-
resenting an HSI and has been widely applied in hyperspectral
classification [3] and hyperspectral unmixing [4]. Previous
researches also promotes low rank approximation.

However, matrix/tensor based feature extraction can only
extract shallow features. Recently, convolutional neural net-
work (CNN) has shown its great success in classification of
hyperspectral imagery [5] thanks to its ability in deep fea-
ture extraction. Deep structure and convolutional kernels are
two significant parts in CNN. Deep structure hierarchically
extracts deep features. Convolutional architecture learns
multi-scale spatial structure of images [6]. Unfortunately,
training these networks end-to-end with fully learnable con-
volutional kernels is computationally expensive and prone
to over-fitting. Thus, many approaches [7] [8] try to replace
the process of learning these convolutional kernels with tra-
ditional matrix/tensor factorization methods. For example,
PCANet [9] learns convolutional kernels by employing PCA
instead of back propagation.

In this paper, borrowing the idea of PCANet and CNN,
we propose a deep tensor factorization method for hyperspec-
tral classification. As shown in Fig. 1, this method composes
of three parts in each layer, namely, convolution operation,
tensor factorization and combination. Convolution operation
uses the idea of PCANet to 3D HSI as a way of learning
3D convolutional kernels to suppress the noise effect. Ten-
sor factorization decomposes the data cube convolved by dif-
ferent convolutional kernels into a low rank tensor. Com-
bination combines all factorization results of different con-
volved data cubes into a data cube for next layer. On one
hand, the proposed method suppresses the impact of noise
for the sake of tensor factorization and 3D convolution oper-
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ation. On the other hand, the deep tensor factorization learns
low-dimensional representation hieratically.

2. IMPLEMENTATION DETAILS

In this section, we describe the details of the proposed
method. Since each layer has the same architecture, the
architecture of a specific layer is explained, including region-
based convolution, tensor factorization and combination.

2.1. The first stage: Region-based Convolution

Inspired by PCANet, we extend the idea of learning con-
volutional kernels by employing PCA to the 3D data cube.
Given an HSI X ∈ ℜM×N×P with M × N pixels and P
bands, we first extract a 3D patch with the size of k1 × k2 ×
k3 around each pixel on the data cube. Then reshape each
collected patch into a column vector xj ∈ ℜk1k2k3×1, j =
1, 2, . . . ,MNP , and arrange all the vectorized patches to a
matrix:

X = [x̄1, x̄2, . . . , x̄MNP ] (1)

where x̄i represents the mean feature of i-th patch.
Assuming that the number of convolutional kernels in i-

th layer is Li, convolution kernels can be obtained from X by
PCA , mathematically given by:

min
V∈ℜk1k2k3×Li

∥X−VVTX∥2F , s.t.VTV = ILi (2)

where ILi is an identity matrix of size Li × Li. The well-
known solution is the first Li eigenvectors of scatter matrix
XXT . Hence, the obtained convolutional kernels can be for-
mulated as:

Wi
l = Cubek1,k2,k3(Eigl(XXT )) ∈ ℜk1×k2×k3

l = 1, 2, . . . , Li

(3)

where Eigl(XXT ) denotes the l-th principal eigenvector of
XXT and Cubek1,k2,k3(v) is a function that maps a column
vector v ∈ ℜk1k2k3×1 into a 3D convolutional kernel W ∈
ℜk1×k2×k3 . After we obtain all Li convolutional kernels in
i-th layer, we convolve each pixel on the data cube with these
convolutional kernels, leading to Li convolved data cubes. To
keep the same spatial size, zero padding is adopted during the
convolution operation. These convolved data cubes are then
fed into tensor factorization, which will be presented in the
next section.

2.2. The second stage: Tensor Factorization

A tensor is a multi-way array or multi-dimensional matrix.
The order of a tensor is the number of dimensions, also known
as ways or modes. By this definition, an HSI is a third-
order tensor, where two spatial dimensions and one spectral
dimension comprise its three modes. Recent researches show

that tensor has the superiority in learning a subspace that lies
hiddenly in the data. Two of the most commonly used de-
compositions are Tucker decomposition and CANDECOMP
PARAFAC decomposition (CPD). In our method, we adopt
CP decomposition to learn a low-rank representation of HSI.

After we have obtained Li convolved data cubes, CPD
decomposes each one of them into the following form:

Xk =
R∑

r=1

λra
(1)
r ◦ a(2)r ◦ a(3)r (4)

where Xk ∈ ℜM×N×P represents the k-th (k = 1, 2, . . . , Li)

convolved data cube, a(1)r ∈ ℜM×1,a
(2)
r ∈ ℜN×1,a

(3)
r ∈

ℜP×1(r = 1, 2, . . . , R) are column vectors, ◦ denotes outer
product, λr is a scalar coefficient and R is the number of pre-
defined rank. From the machine learning perspective, a(3)r

can be considered as r-th basis and a
(1)
r ◦ a

(2)
r is associated

weight matrix.

2.3. The third stage: Combination

Combination step includes the combination of tensor factor-
ization results for next layer and feature combination for clas-
sification. As can be seen in Fig.2, given the result of CPD
of the kth convolved data cube Xk, we abandon all a(3)r and
concatenate each λra

(1)
r ◦ a

(2)
r ∈ ℜM×N (r = 1, 2, . . . , R)

as a frontal slice of formed data cube X̃k ∈ ℜM×N×R in the
third mode. After Repeating this operation on all convolved
data cube, all Li formed data cubes X̃k(k = 1, 2, . . . , Li) are
again concatenated along the third mode to form the final data
cube for next layer, which has the size of M ×N × LiR.

For feature combination, each layer’s resulting data cube
is concatenated in the third mode to form the final feature
cube used for classification, i.e., all the information in each
layer is preserved in order to facilitate hyperspectral classifi-
cation.

3. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed method,
we employ two real-world remote sensing HSIs acquired by
NASA AVIRIS instrument. The first image (145 × 145 pix-
els) was acquired over the Indian Pine Test Site in Northwest-
ern Indiana, whose 50th band is shown in Fig.3. This im-
age contains 16 land-cover classes and 10366 labeled pixels,
while 200 bands are used for the experiments. The second
image (512 × 217 pixels) was acquired over Salinas Valley,
CA, USA. Its 70th band image is shown in Fig.4. There are
16 land-cover classes with 54129 labeled pixels, while 204
bands are used for the analysis.

To simulate the real-world situations where only few la-
beled samples are available, we evaluate the performance of
classification in two settings: for the Indian data set, 5% and
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Fig. 1. The structure of Deep tensor factorization

Fig. 2. Combine the decomposition result of a convolved data
cube

Fig. 3. Band 50 of AVIRIS Indian Pine

Fig. 4. Band 70 of AVIRIS Salinas

10% of the labeled pixels from each class are randomly se-
lected as the training set, while the rest are used as the test
set; in terms of the Salinas data set, 30 and 68 labeled pix-
els from each class are randomly chosen to get the training
set, while remaining labeled pixels are treated as the test set.
Linear support vector machine(SVM) is adopted as classi-
fier for all cases. We try the parameter in the range C ∈
{2−5, 2−4, . . . , 25}. Overall accuracy (OA) is considered for
accuracy evaluation.

In our experimental settings, we adopt an architecture of
three layers and the number of convolutional kernels is set to
three in each layer. In terms of the size of the convolutional
kernel, it is set to 1× 1× 3 because we only focus the convo-
lution operation on the redundant spectral information rather
than considering the spatial information. We conduct three
experiments by varying the number of ranks in each layer: in
the first experiment, the number of ranks in three layers is 4,
2, 1 respectively; in the second experiment, it is 8, 4, 1; in the
third experiment, it is 10, 5, 2. The overall accuracy results
are displayed in Table 1.

Table 1 shows the results (OA) on classification accura-
cies versus different methods of feature extraction. From the
Table 1, several observations can be made. First of all, com-
pared to the raw spectral features (SVM All Bands), DTF fea-
tures show its great advantage, which reveals that the pro-
posed method indeed extracts some useful information for
hyperspectral classification. On the other hand, compared to
other matrix feature extraction methods (PCA, NMF) under
the same dimensionality (the number of reduced dimension-
ality), the results obtained by DTF are much better than these
algorithms. The results obtained by DTF outperforms these
results of TF, which indicates that our method is better than
the original tensor factorization. In conclusion, above results
demonstrate that the proposed method is competitive in fea-
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Table 1. Overall accuracy results on AVIRIS datasets
Indian Pine

5%

Dims DTF PCA NMF TF
21 85.94 66.95 66.20 80.48
39 91.67 64.57 66.34 85.11
51 92.62 66.14 66.92 81.58

SVM All Bands 71.87

10%

Dims DTF PCA NMF TF
21 89.66 70.21 70.04 84.77
39 94.59 69.27 70.95 88.99
51 95.57 71.30 71.78 88.09

SVM All Bands 76.68
Salinas

30

Dims DTF PCA NMF TF
21 91.75 87.20 86.48 87.85
39 93.94 85.95 86.34 82.81
51 95.11 83.45 86.25 81.19

SVM All Bands 85.77

68

Dims DTF PCA NMF TF
21 93.62 90.41 89.48 92.44
39 97.50 89.36 88.78 91.73
51 97.59 88.87 88.87 90.42

SVM All Bands 88.62
1. DTF represents the deep tensor factorization.
2. TF stands for original tensor factorization without the deep structure
and the convolution operation.
3. SVM All bands means the classification result on raw spectral bands
of the hyperspectral data using linear SVM.

ture extraction.
Under the same rank settings as above, we further vali-

date the effectiveness of the convolution operation. The com-
pared results (OA) are given in the Table 2. From the Table
2, the results of DTF∗ are lower than these results of DTF,
which proves that the convolution operation further improves
the performance on the basis of the deep structure .

Table 2. Overall accuracy results on AVIRIS datasets
Indian Pine Salinas

5%

DTF DTF∗

30

DTF DTF∗

85.94 67.72 91.75 84.50
91.67 86.01 93.94 92.71
92.62 85.18 95.11 94.39

1. DTF∗ represents the deep tensor factorization without the convolution
operation.

4. CONCLUSIONS

In this paper, we present a hierarchical way of feature ex-
traction for classification of the hyperspectral data. The deep
tensor factorization combines the tensor factorization with the

deep structure and the convolution operation. Tensor factor-
ization takes the spatial information into account, the deep
structure tries to extract hierarchical information and the con-
volution operation suppresses the effect of noise. The pro-
posed method obtains some competitive results on hyperspec-
tral classification.
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